• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Challenges in Enzyme Catalysis - Photosystem II and Orotidine Decarboxylase : A Density Functional Theory Treatment

Lundberg, Marcus January 2005 (has links)
<p>Possibly the most fascinating biochemical mechanism remaining to be solved is the formation of oxygen from water in photosystem II. This is a critical part of the photosynthetic reaction that makes solar energy accessible to living organisms.</p><p>The present thesis uses quantum chemistry, more specifically the density functional B3LYP, to investigate a mechanism where an oxyl radical bound to manganese is the active species in O-O bond formation. Benchmark calculations on manganese systems confirm that B3LYP can be expected to give accurate results. The effect of the self-interaction error is shown to be limited. Studies of synthetic manganese complexes support the idea of a radical mechanism. A manganese complex with an oxyl radical is active in oxygen formation while manganese-oxo complexes remain inactive. Formation of the O-O bond requires a spin transition but there should be no effect on the rate. Spin transitions are also required in many short-range electron-transfer reactions.</p><p>Investigations of the superproficient enzyme orotidine decarboxylase support a mechanism that involves an invariant network of charged amino acids, acting together with at least two mobile water molecules.</p>
2

Challenges in Enzyme Catalysis - Photosystem II and Orotidine Decarboxylase : A Density Functional Theory Treatment

Lundberg, Marcus January 2005 (has links)
Possibly the most fascinating biochemical mechanism remaining to be solved is the formation of oxygen from water in photosystem II. This is a critical part of the photosynthetic reaction that makes solar energy accessible to living organisms. The present thesis uses quantum chemistry, more specifically the density functional B3LYP, to investigate a mechanism where an oxyl radical bound to manganese is the active species in O-O bond formation. Benchmark calculations on manganese systems confirm that B3LYP can be expected to give accurate results. The effect of the self-interaction error is shown to be limited. Studies of synthetic manganese complexes support the idea of a radical mechanism. A manganese complex with an oxyl radical is active in oxygen formation while manganese-oxo complexes remain inactive. Formation of the O-O bond requires a spin transition but there should be no effect on the rate. Spin transitions are also required in many short-range electron-transfer reactions. Investigations of the superproficient enzyme orotidine decarboxylase support a mechanism that involves an invariant network of charged amino acids, acting together with at least two mobile water molecules.
3

Radical additions of hydrocarbons, ethers and acetals to alkenes via allyl transfer reaction: A new chain reaction for C-H bond functionalization

Patil, Shradha Vasant 10 May 2013 (has links)
Functionalization of hydrocarbons via a free-radical based allyl transfer reaction using various allyl bromide substrates has been previously studied. The work described in this dissertation focuses on the replacement of Br by phthalimido-N-oxyl (PINO ) which helps make this chemistry environmentally friendly. To replace Br with PINO , replacement of previously used allyl-bromide substrates with new allyl-PINO substrates were necessary. Various allyl- PINO compounds were synthesized and the use of these allyl-phthalimido-N-oxyl (allyl-PINO) compounds for the functionalization of various alkyl aromatic hydrocarbons is demonstrated. Kinetic studies were performed to observe the efficiency of the new chain reaction compared to the previously reported studies with allyl-bromides. We recently discovered that these allyl substrates are useful for the functionalization of ethers and acetals. The functionalization of various cyclic and acyclic ethers was performed using these allyl transfer reactions. This reaction was also performed in-solution, which allowed us to perform these reactions at low reagent concentrations. Kinetic chain lengths were measured for these reactions. High chain lengths were observed for all used ethers. Kinetic studies to investigate the rate of radical addition-elimination processes were performed using laser flash photolysis and competition kinetics. These experiments helped us to measure the reactivity and selectivity of PINO as a chain carrier in comparison with Br. Additionally, a new competition experiment was designed to study the relative rate constant for the &#1049109;-fragmentation process. For this experiment a novel substrate that contains two leaving groups, Br and PINO, was synthesized, and the relative rates of elimination of Br vs PINO were compared. / Ph. D.

Page generated in 0.0405 seconds