Spelling suggestions: "subject:"préprocessamento"" "subject:"processamento""
1 |
Mineração de regras de associação generalizadas utilizando ontologias fuzzy e similaridade baseada em contextoAyres, Rodrigo Moura Juvenil 08 August 2012 (has links)
Made available in DSpace on 2016-06-02T19:05:58Z (GMT). No. of bitstreams: 1
4486.pdf: 3511223 bytes, checksum: 3f8c09a3cb87230a2ac0f6706ea07944 (MD5)
Previous issue date: 2012-08-08 / Financiadora de Estudos e Projetos / The mining association rules are an important task in data mining. Traditional algorithms of mining association rules are based only on the database items, providing a very specific knowledge. This specificity may not be advantageous, because the users normally need more general, interesting and understandable knowledge. In this sense, there are approaches working in order to obtain association rules with items belonging to any level of a taxonomic structure. In the crisp contexts taxonomies are used in different steps of the mining process. When the objective is the generalization they are used, mainly, in the pre-processing or post-processing stages. On the other hand, in the fuzzy context, fuzzy taxonomies are used, mainly, in the pre-processing step, during the generating extended transactions. A great problem of these transactions is related to the huge amount of candidates and rules. Beyond that, the inclusion of ancestors ends up generating redundancy problems. Besides, it is possible to see that many works have directed efforts for the question of mining fuzzy rules, exploring linguistic terms, but few approaches have been proposed for explore new steps of mining process. In this sense, this paper proposes the Context FOntGAR algorithm, a new algorithm for mining generalized association rules under all levels of fuzzy ontologies composed by specialization/generalization degrees varying in the interval [0,1]. In order to obtain more semantic enrichment, the rules may be composed by similarity relations, which are represented at the fuzzy ontologies in different contexts. In this work the generalization is done during the post-processing step. Other relevant points of this paper are the specification of a new approach of generalization; including a new grouping rules treatment, and a new and efficient way for calculating both support and confidence of generalized rules. / Algoritmos tradicionais de associação se caracterizam por utilizar apenas itens contidos na base de dados, proporcionando um conhecimento muito específico. No entanto, essa especificidade nem sempre é vantajosa, pois normalmente os usuários finais necessitam de padrões mais gerais, e de fácil compreensão. Nesse sentido, existem abordagens que não se limitam somente aos itens da base, e trabalham com o objetivo de minerar regras (generalizadas) com itens presentes em qualquer nível de estruturas taxonômicas. Taxonomias podem ser utilizadas em diferentes etapas do processo de mineração. A literatura mostra que, em contextos crisp, essas estruturas são utilizadas tanto em etapa de pré-processamento, quanto em etapa de pós-processamento, e que em domínios fuzzy, a utilização ocorre somente na etapa de pré-processamento, durante a geração de transações estendidas. Além do viés de utilização de transações estendidas, que podem levar a geração de um volume de regras superior ao caso tradicional, é possível notar que, em domínios nebulosos, as pesquisas dão enfoque apenas à mineração de regras fuzzy, deixando de lado a exploração de diferentes graus de especialização/generalização em taxonomias. Nesse sentido, este trabalho propõem o algoritmo FOntGAR, um novo algoritmo para mineração de regras de associação generalizadas com itens presentes em qualquer nível de ontologias compostas por graus de especialização/generalização variando no intervalo [0,1] (ontologias de conceitos fuzzy), em etapa de pós-processamento. Objetivando obter maior enriquecimento semântico, as regras geradas pelo algoritmo também podem possuir relações de similaridade, de acordo com contextos pré-definidos. Outros pontos relevantes são a especificação de uma nova abordagem de generalização (incluindo um novo tratamento de agrupamento das regras), e um novo e eficiente método para calcular o suporte estendido das regras generalizadas durante a etapa mencionada.
|
Page generated in 0.061 seconds