Spelling suggestions: "subject:"fuzzy ontologies"" "subject:"fuzzy antologies""
1 |
Sistema FOQuE para expansão semântica de consultas baseada em ontologias difusasYaguinuma, Cristiane Akemi 22 June 2007 (has links)
Made available in DSpace on 2016-06-02T19:05:26Z (GMT). No. of bitstreams: 1
1634.pdf: 2033754 bytes, checksum: ef58063d765aca814c3608c0828d4965 (MD5)
Previous issue date: 2007-06-22 / Financiadora de Estudos e Projetos / As availability of data from several areas of knowledge grows, it is even more necessary to
develop effective techniques to retrieve the desired information, aiming to reduce irrelevant
answers and ensure that relevant results are not ignored. Considering this context, we present
the FOQuE system, developed to perform query expansion in order to retrieve semantically
relevant and broad results. Based on fuzzy ontologies, this system is able to obtain
approximate results that satisfy user requirements according to expansion parameters defined
by the user. The additional answers retrieved by the FOQuE system are classified according to
the semantic expansion performed and the relevance to the query, therefore it is possible to
improve results that are presented to the user. / Diante da crescente facilidade de acesso a dados de diversas áreas do conhecimento, cada vez
mais são necessárias técnicas eficazes para recuperar a informação desejada, visando reduzir
respostas irrelevantes e assegurar que resultados relevantes não sejam desprezados. Dentro
deste contexto, este trabalho apresenta o sistema FOQuE, desenvolvido para realizar diversos
tipos de expansão de consultas com o intuito de recuperar resultados semanticamente
relevantes e abrangentes. Baseado em ontologias difusas, este sistema é capaz de obter
resultados aproximados que satisfaçam aos requisitos do usuário, de acordo com parâmetros
de expansão especificados por ele. As respostas adicionais recuperadas pelo sistema FOQuE
são classificadas segundo o tipo de expansão realizada e a relevância para a consulta,
melhorando, assim, a forma como os resultados são apresentados ao usuário.
|
2 |
Abordagem de recomendação baseada em conteúdo utilizando ontologia fuzzy de domínio e ontologia crisp de preferência do usuárioBaldárrago, Arturo Elias Urquizo 30 July 2012 (has links)
Made available in DSpace on 2016-06-02T19:05:58Z (GMT). No. of bitstreams: 1
4477.pdf: 9424807 bytes, checksum: 7fc7288ca2c87d6b86aed1053e7d8903 (MD5)
Previous issue date: 2012-07-30 / Financiadora de Estudos e Projetos / This paper presents an approach for developing content-based recommendation applications with focus on the use of a specific domain fuzzy ontology along with a user preference ontology. The approach falls into two stages: Ontology Engineering and Recommendation System Engineering. In the Ontology Engineering, a domain ontology with fuzzy relationships and a user ontology are built. The user ontology is set as an instance of the domain ontology, but it is modeled in a way that allows to store each user s preferences. The usage of the ontologies produced in Ontology Engineering provides a gain in precision for the results obtained by applications in the Recommendation System Engineering stage. For evaluation purposes, we instantiated the proposed approach in the development of a Recommender System for the field of electronic commerce, focusing on the mobile devices commerce domain. Following the experimental methodology, An evaluation was conducted in order to assess the approach s impact on the accuracy of results provided by the developed Recommender System. The results showed that the use of our approach contributed to increase the accuracy of the results, in terms of prediction, classification and ranking. The contributions of this work include: the approach for developing content-based recommendation applications by using a specific domain fuzzy ontology along with a user preference ontology; the definition of the UPFON methodology, which integrates the approach, to construct fuzzy ontologies; an instantiation of a fuzzy ontology for the mobile devices domain and a strategy to capture; and propagate the user preferences by means of ontologies. / Esta dissertação apresenta uma abordagem para o desenvolvimento de aplicações de recomendação baseadas em conteúdo utilizando ontologia específica de domínio e ontologia de preferência de usuário. Tal abordagem está dividida em duas etapas: a Engenharia de Ontologia e a Engenharia do Sistema de Recomendação. Na Engenharia de Ontologia são construídas: uma ontologia de domínio com relacionamentos difusos; e uma ontologia crisp de usuário definida como uma instância da ontologia de domínio, porém modelada de forma que permita refletir as preferências de cada usuário para o domínio instanciado. A utilização das ontologias produzidas na Engenharia de Ontologia proporciona um ganho de precisão nos resultados obtidos por aplicações desenvolvidas conforme a abordagem proposta. Para fins de avaliação, a abordagem proposta foi instanciada no domínio de comércio de dispositivos móveis. Seguindo a metodologia experimental, foi conduzida uma experimentação com o objetivo de avaliar o impacto da abordagem na precisão dos resultados fornecidos pelo Sistema de Recomendação. Os resultados evidenciaram que o uso da abordagem proposta colaborou para o incremento da precisão dos resultados. As contribuições deste trabalho incluem: a abordagem para o desenvolvimento de aplicações de recomendação baseadas em conteúdo utilizando ontologia fuzzy específica de domínio e ontologia de preferência de usuário; a definição da metodologia de construção de ontologias fuzzy chamada UPFON; a instanciação de uma ontologia fuzzy no domínio dos dispositivos móveis e a estratégia para capturar as preferências do usuário e propagá-las em uma ontologia crisp de usuário.
|
3 |
Mineração de regras de associação generalizadas utilizando ontologias fuzzy e similaridade baseada em contextoAyres, Rodrigo Moura Juvenil 08 August 2012 (has links)
Made available in DSpace on 2016-06-02T19:05:58Z (GMT). No. of bitstreams: 1
4486.pdf: 3511223 bytes, checksum: 3f8c09a3cb87230a2ac0f6706ea07944 (MD5)
Previous issue date: 2012-08-08 / Financiadora de Estudos e Projetos / The mining association rules are an important task in data mining. Traditional algorithms of mining association rules are based only on the database items, providing a very specific knowledge. This specificity may not be advantageous, because the users normally need more general, interesting and understandable knowledge. In this sense, there are approaches working in order to obtain association rules with items belonging to any level of a taxonomic structure. In the crisp contexts taxonomies are used in different steps of the mining process. When the objective is the generalization they are used, mainly, in the pre-processing or post-processing stages. On the other hand, in the fuzzy context, fuzzy taxonomies are used, mainly, in the pre-processing step, during the generating extended transactions. A great problem of these transactions is related to the huge amount of candidates and rules. Beyond that, the inclusion of ancestors ends up generating redundancy problems. Besides, it is possible to see that many works have directed efforts for the question of mining fuzzy rules, exploring linguistic terms, but few approaches have been proposed for explore new steps of mining process. In this sense, this paper proposes the Context FOntGAR algorithm, a new algorithm for mining generalized association rules under all levels of fuzzy ontologies composed by specialization/generalization degrees varying in the interval [0,1]. In order to obtain more semantic enrichment, the rules may be composed by similarity relations, which are represented at the fuzzy ontologies in different contexts. In this work the generalization is done during the post-processing step. Other relevant points of this paper are the specification of a new approach of generalization; including a new grouping rules treatment, and a new and efficient way for calculating both support and confidence of generalized rules. / Algoritmos tradicionais de associação se caracterizam por utilizar apenas itens contidos na base de dados, proporcionando um conhecimento muito específico. No entanto, essa especificidade nem sempre é vantajosa, pois normalmente os usuários finais necessitam de padrões mais gerais, e de fácil compreensão. Nesse sentido, existem abordagens que não se limitam somente aos itens da base, e trabalham com o objetivo de minerar regras (generalizadas) com itens presentes em qualquer nível de estruturas taxonômicas. Taxonomias podem ser utilizadas em diferentes etapas do processo de mineração. A literatura mostra que, em contextos crisp, essas estruturas são utilizadas tanto em etapa de pré-processamento, quanto em etapa de pós-processamento, e que em domínios fuzzy, a utilização ocorre somente na etapa de pré-processamento, durante a geração de transações estendidas. Além do viés de utilização de transações estendidas, que podem levar a geração de um volume de regras superior ao caso tradicional, é possível notar que, em domínios nebulosos, as pesquisas dão enfoque apenas à mineração de regras fuzzy, deixando de lado a exploração de diferentes graus de especialização/generalização em taxonomias. Nesse sentido, este trabalho propõem o algoritmo FOntGAR, um novo algoritmo para mineração de regras de associação generalizadas com itens presentes em qualquer nível de ontologias compostas por graus de especialização/generalização variando no intervalo [0,1] (ontologias de conceitos fuzzy), em etapa de pós-processamento. Objetivando obter maior enriquecimento semântico, as regras geradas pelo algoritmo também podem possuir relações de similaridade, de acordo com contextos pré-definidos. Outros pontos relevantes são a especificação de uma nova abordagem de generalização (incluindo um novo tratamento de agrupamento das regras), e um novo e eficiente método para calcular o suporte estendido das regras generalizadas durante a etapa mencionada.
|
Page generated in 0.0552 seconds