• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iwasawa modules for [p-adic]-extensions of algebraic number fields /

Minardi, John. January 1986 (has links)
Thesis (Ph. D.)--University of Washington, 1986. / On t.p. "[p-adic]" appears as a Gothic "Z" with superscript "d" and subscript "p." Vita. Bibliography: leaves [66]-67.
2

Algebraic numbers and harmonic analysis in the p-series case

Aubertin, Bruce Lyndon January 1986 (has links)
For the case of compact groups G = Π∞ j=l Z(p)j which are direct products of countably many copies of a cyclic group of prime order p, links are established between the theories of uniqueness and spectral synthesis on the one hand, and the theory of algebraic numbers on the other, similar to the well-known results of Salem, Meyer et al on the circle. Let p ≥ 2 be a prime and let k{x⁻¹} denote the p-series field of formal Laurent series z = Σhj=₋∞ ajxj with coefficients in the field k = {0, 1,…, p-1} and the integer h arbitrary. Let L(z) = - ∞ if aj = 0 for all j; otherwise let L(z) be the largest index h for which ah ≠ 0. We examine compact sets of the form [Algebraic equation omitted] where θ ε k{x⁻¹}, L(θ) > 0, and I is a finite subset of k[x]. If θ is a Pisot or Salem element of k{x⁻¹}, then E(θ,I) is always a set of strong synthesis. In the case that θ is a Pisot element, more can be proved, including a version of Bochner's property leading to a sharper statement of synthesis, provided certain assumptions are made on I (e.g., I ⊃ {0,1,x,...,xL(θ)-1}). Let G be the compact subgroup of k{x⁻¹} given by G = {z: L(z) < 0}. Let θ ɛ k{x⁻¹}, L(θ) > 0, and suppose L(θ) > 1 if p = 3 and L(θ) > 2 if p = 2. Let I = {0,1,x,...,x²L(θ)-1}. Then E = θ⁻¹Ε(θ,I) is a perfect subset of G of Haar measure 0, and E is a set of uniqueness for G precisely when θ is a Pisot or Salem element. Some byways are explored along the way. The exact analogue of Rajchman's theorem on the circle, concerning the formal multiplication of series, is obtained; this is new, even for p = 2. Other examples are given of perfect sets of uniqueness, of sets satisfying the Herz criterion for synthesis, and sets of multiplicity, including a class of M-sets of measure 0 defined via Riesz products which are residual in G. In addition, a class of perfect M₀-sets of measure 0 is introduced with the purpose of settling a question left open by W.R. Wade and K. Yoneda, Uniqueness and quasi-measures on the group of integers of a p-series field, Proc. A.M.S. 84 (1982), 202-206. They showed that if S is a character series on G with the property that some subsequence {SpNj} of the pn-th partial sums is everywhere pointwise bounded on G, then S must be the zero series if SpNj → 0 a.e.. We obtain a strong complement to this result by establishing that series S on G exist for which Sn → 0 everywhere outside a perfect set of measure 0, and for which sup |SpN| becomes unbounded arbitrarily slowly. / Science, Faculty of / Mathematics, Department of / Graduate
3

On p-adic Continued Fractions and Quadratic Irrationals

Miller, Justin Thomson January 2007 (has links)
In this dissertation we investigate prior definitions for p-adic continued fractions and introduce some new definitions. We introduce a continued fraction algorithm for quadratic irrationals, prove periodicity for Q₂ and Q₃, and numerically observe periodicity for Q(p) when p < 37. Various observations and calculations regarding this algorithm are discussed, including a new type of symmetry observed in many of these periods, which is different from the palindromic symmetry observed for real continued fractions and some previously defined p-adic continued fractions. Other results are proved for p-adic continued fractions of various forms. Sufficient criteria are given for a class of p-adic continued fractions of rational numbers to be finite. An algorithm is given which results in a periodic continued fraction of period length one for √D ∈ Zˣ(p), D ∈ Z, D non-square; although, different D require different parameters to be used in the algorithm. And, a connection is made between continued fractions and de Weger’s approximation lattices, so that periodic continued fractions can be generated from a periodic sequence of approximation lattices, for square roots in Zˣ(p). For simple p-adic continued fractions with rational coefficients, we discuss observations and calculations related to Browkin’s continued fraction algorithms. In the last chapter, we apply some of the definitions and techniques developed in the earlier chapters for Q(p) and Z to the t-adic function field case F(q)((t)) and F(q)[t], respectively. We introduce a continued fraction algorithm for quadratic irrationals in F(q)((t)) that always produces periodic continued fractions.
4

ON P-ADIC FIELDS AND P-GROUPS

Sordo Vieira, Luis A. 01 January 2017 (has links)
The dissertation is divided into two parts. The first part mainly treats a conjecture of Emil Artin from the 1930s. Namely, if f = a_1x_1^d + a_2x_2^d +...+ a_{d^2+1}x^d where the coefficients a_i lie in a finite unramified extension of a rational p-adic field, where p is an odd prime, then f is isotropic. We also deal with systems of quadratic forms over finite fields and study the isotropicity of the system relative to the number of variables. We also study a variant of the classical Davenport constant of finite abelian groups and relate it to the isotropicity of diagonal forms. The second part deals with the theory of finite groups. We treat computations of Chermak-Delgado lattices of p-groups. We compute the Chermak-Delgado lattices for all p-groups of order p^3 and p^4 and give results on p-groups of order p^5.

Page generated in 0.0469 seconds