Spelling suggestions: "subject:"abnorm"" "subject:"conorm""
1 |
Wiener's lemmaFredriksson, Henrik January 2013 (has links)
In this thesis we study Wiener’s lemma. The classical version of the lemma, whose realm is a Banach algebra, asserts that the pointwise inverse of a nonzero function with absolutely convergent Fourier expansion, also possesses an absolutely convergent Fourier expansion. The main purpose of this thesis is to investigate the validity inalgebras endowed with a quasi-norm or a p-norm.As a warmup, we prove the classical version of Wiener’s lemma using elemen-tary analysis. Furthermore, we establish results in Banach algebras concerning spectral theory, maximal ideals and multiplicative linear functionals and present a proof Wiener’s lemma using Banach algebra techniques. Let ν be a submultiplicative weight function satisfying the Gelfand-Raikov-Shilov condition. We show that if a nonzero function f has a ν-weighted absolutely convergent Fourier series in a p-normed algebra A. Then 1/f also has a ν-weightedabsolutely convergent Fourier series in A.
|
Page generated in 0.0178 seconds