Spelling suggestions: "subject:"nespole"" "subject:"ytspole""
1 |
Användande av lokala nollpunktsreaktorer : Hantering av kapacitiva jordfelsströmmar i kabelnät / Using local neutral point reactors : Dealing with capacitive earth fault currents in cable gridsMagnusson, Johan January 2017 (has links)
The rural power grid has traditionally mostly consisted of overhead power lines. In recent years the trend has been to replace the overhead lines with cables instead. The reason is that overhead lines are relatively vulnerable, strong winds and storms can cause trees and branches to fall over the power lines and cause a phase to ground fault. This will then trip the ground fault relays and disconnect the faulty power line. A cable grid is not vulnerable in the same way, and could be considered a solution to make the power grid more reliable. A cable grid does come whit other types of problems instead. It generates about 50 times more phase to ground capacitance compared with the same length of overhead lines. When a phase to ground fault occurs the capacitance in the healthy phases will generate a current to ground and then through the fault. On average a cable grid generates about 2 A per kilometer. Large cable grids can therefore cause very large capacitive currents to flow through the fault. To counter this, a reactor is placed between the neutral point of the transformer and ground. When a phase to ground fault occurs, the reactor will generate an inductive current which is in the opposite phase compared to the capacitive current. This current will flow through the faulty line and cancel out the capacitive current. In a perfectly tuned power grid the only component left in the fault is a smaller resistive current. Large cable grids will require a large reactor to generate the large inductive current, which might need to flow over a great distance in the grid to reach the fault location. To reduce the inductive current from the central reactor, it is possible to install smaller local reactors in the grid. These will then in the event of a phase to ground fault generate a part of the inductive current, which will reduce the currents from the central reactor. This report will look at the factors related to grounding systems and how these factors affect the ground fault currents. The purpose of the report is to give recommendations to Umeå Energi on where in their grid they should install additional local reactors and also which factors they should consider when doing future expansions and rebuilds of their power grid.
|
Page generated in 0.0384 seconds