Spelling suggestions: "subject:"ppy"" "subject:"pyy""
1 |
Non-linear load-deflection models for seafloor interaction with steel catenary risersJiao, Yaguang 15 May 2009 (has links)
The simulation of seafloor-steel catenary interaction and prediction of riser fatigue life required an accurate characterization of seafloor stiffness as well as realistic description of riser load-deflection (P-y) response. This thesis presents two load-deflection (P-y) models (non-degradating and degradating models) to simulate seafloor-riser interaction. These two models considered the seafloor-riser system in terms of an elastic steel pipe supported on non-linear soil springs with vertical motions. These two models were formulated in terms of a backbone curve describing self-embedment of the riser, bounding curves describing P-y behavior under extremely large deflections, and a series of rules for describing P-y behavior within the bounding loop. The non-degradating P-y model was capable of simulating the riser behavior under very complex loading conditions, including unloading (uplift) and re-loading (downwards) cycles under conditions of partial and full separation of soils and riser. In the non-degradating model, there was a series of model parameters which included three riser properties, two trench geometry parameters and one trench roughness parameter, two backbone curve model parameters, and four bounding loop model parameters. To capture the seafloor stiffness degradation effect due to cyclic loading, a degradating P-y model was also developed. The degradating model proposes three degradation control parameters, which consider the effects of the number of cycles and cyclic unloading-reloading paths. Accumulated deflections serve as a measure of energy dissipation. The degradating model was also made up of three components. The first one was the backbone curve, same as the non-degradating model. The bounding loops define the P-y behavior of extreme loading deflections. The elastic rebound curve and partial separation stage were in the same formation as the non-degradating model. However, for the re-contact and re-loading curve, degradation effects were taken into the calculation. These two models were verified through comparisons with laboratory basin tests. Computer codes were also developed to implement these models for seafloor-riser interaction response.
|
2 |
Non-linear load-deflection models for seafloor interaction with steel catenary risersJiao, Yaguang 15 May 2009 (has links)
The simulation of seafloor-steel catenary interaction and prediction of riser fatigue life required an accurate characterization of seafloor stiffness as well as realistic description of riser load-deflection (P-y) response. This thesis presents two load-deflection (P-y) models (non-degradating and degradating models) to simulate seafloor-riser interaction. These two models considered the seafloor-riser system in terms of an elastic steel pipe supported on non-linear soil springs with vertical motions. These two models were formulated in terms of a backbone curve describing self-embedment of the riser, bounding curves describing P-y behavior under extremely large deflections, and a series of rules for describing P-y behavior within the bounding loop. The non-degradating P-y model was capable of simulating the riser behavior under very complex loading conditions, including unloading (uplift) and re-loading (downwards) cycles under conditions of partial and full separation of soils and riser. In the non-degradating model, there was a series of model parameters which included three riser properties, two trench geometry parameters and one trench roughness parameter, two backbone curve model parameters, and four bounding loop model parameters. To capture the seafloor stiffness degradation effect due to cyclic loading, a degradating P-y model was also developed. The degradating model proposes three degradation control parameters, which consider the effects of the number of cycles and cyclic unloading-reloading paths. Accumulated deflections serve as a measure of energy dissipation. The degradating model was also made up of three components. The first one was the backbone curve, same as the non-degradating model. The bounding loops define the P-y behavior of extreme loading deflections. The elastic rebound curve and partial separation stage were in the same formation as the non-degradating model. However, for the re-contact and re-loading curve, degradation effects were taken into the calculation. These two models were verified through comparisons with laboratory basin tests. Computer codes were also developed to implement these models for seafloor-riser interaction response.
|
3 |
Earth pressures applied on drilled shaft retaining walls in expansive clay during cycles of moisture fluctuationKoutrouvelis, Iraklis, 1986- 29 October 2012 (has links)
Estimating the earth pressures applied on drilled shaft retaining walls in expansive clays is challenging due to the soil's tendency to shrink and swell under cycles of moisture fluctuation. While empirical suggestions do exist, significant uncertainty exists regarding the effect of volumetric changes of the soil on the earth pressures.
In order to investigate this uncertainty, a fully instrumented drilled shaft retaining wall named in the honor of Lymon C. Reese, was constructed in the highly expansive clay of the Taylor formation. Inclinometers and optical fiber strain gauges were installed in three instrumented shafts and time domain reflectrometry sensors were placed within the soil to measure changes in the moisture content. Nearly two years of monitoring data have been obtained which are used to estimate the earth pressure distribution at different moisture conditions.
Processing of the raw strain data was required to eliminate the effects of tension cracks and other microscale factors that caused significant variation in the results. Good agreement was obtained between the processed strain and inclinometer data as the deflected shapes predicted from both monitoring elements were similar. Finally, the earth pressure distribution for six dates that represent different moisture conditions of the Taylor clay were plotted and the results of the strain gauge and inclinometer analysis were consistent.
A p-y analysis was also conducted to estimate the range of earth pressures applied on the wall. A triangular earth pressure diagram was used as external load above the excavation level and the equivalent fluid pressure was evaluated by matching the deflected shapes generated from the inclinometer data to those predicted by the p-y model. The results were compared to the empirical values that TxDOT uses for design of similar type of walls in expansive clay.
Finally, the side shear and temperature effects on the lateral response of the wall were quantified. A differential linear thermal model was used to evaluate the temperature effects and a t-z analysis was conducted to account for the side shear applied on the wall due to volumetric changes of the soil. It is recommended that their combined effect be considered in the design. / text
|
4 |
Provas de carga est?tica com carregamento lateral em estacas escavadas h?lice cont?nua e cravadas met?licas em areia / Static Lateral loading tests on CFA bored piles and metalic driven piles in cohesionless soilAra?jo, Arthur Gomes Dantas de 10 December 2013 (has links)
Made available in DSpace on 2014-12-17T14:48:16Z (GMT). No. of bitstreams: 1
ArthurGDA_DISSERT.pdf: 3193366 bytes, checksum: 6e05d0803e66a8ae37a24358be586be8 (MD5)
Previous issue date: 2013-12-10 / An experimental study has been conducted to investigate the behavior of
continuous flight auger (cfa) bored piles and metalic driven H-section piles under
lateral loading in cohesionless soils. The piles were tested in two different areas at
the same site. Both areas consisted of a 3-m thick compacted superficial fill of pure
fine sand, underlain by layers of naturally occurring pure fine-thick sand. Fills are
differentiated by the relative densities which were compressed, 45% e 70%,
respectively. Each area received one identical pair of cfa piles and two identical pairs
of H-piles. A static lateral loading test was performed in each pair of piles. In this
work, the pile load test results are reported and interpreted. The horizontal coefficient
of subgrade reaction was determined from the results of the loading tests and
compared with values determined by correlations based on penetration resistance
index of SPT tests (NSPT). p-y formulations describing the static behavior of the piles
were applied to the problem under evaluation. Back Analyses were made through
theoretical and experimental p-y curves for obtaining input parameters for the
analytic models, among which the coefficient of horizontal reaction. The soil pile
system horizontal loading at rupture was determined by the theoretical methods and
the results were compared with the experimental results, checking its validity / Um estudo experimental foi realizado para investigar o comportamento de
estacas escavadas h?lice cont?nua e estacas cravadas met?licas submetidas a
carregamentos laterais em areia. As estacas foram ensaiadas em duas ?reas
diferentes no mesmo local. Ambas as ?reas eram compostas por um aterro
superficial de 3 m de espessura de areia fina, seguido de camadas naturais de areia
fina a grossa. Os aterros diferenciam-se pela densidade relativa com que foram
compactados, 45% e 70%, respectivamente. Cada ?rea recebeu um par id?ntico de
estacas h?lice cont?nua e dois pares id?nticos de estacas met?licas com perfil H .
Em cada par de estacas foi executada uma prova de carga est?tica. Neste trabalho,
os resultados das provas de carga s?o apresentados e interpretados. O coeficiente
de rea??o horizontal do solo foi determinado atrav?s dos resultados das provas de
carga e comparado com valores obtidos a partir de correla??es baseadas no ?ndice
de resist?ncia ? penetra??o do ensaio SPT (NSPT). Curvas p-y foram constru?das
para prever o comportamento de estacas submetidas a carregamentos horizontais.
Retro an?lises foram efetuadas atrav?s das curvas p-y te?ricas e experimentais
para obten??o de par?metros de entrada para os modelos anal?ticos, dentre os quais
o coeficiente de rea??o horizontal. A carga de ruptura do sistema solo estaca foi
determinada atrav?s de m?todos te?ricos e os resultados foram comparados com os
resultados experimentais, verificando sua validade
|
5 |
Physical modeling and study of the behavior of deep foundations of offshore wind turbines in sand / Modélisation physique et étude du comportement de fondations profondes d’éoliennes offshore dans du sableEl Haffar, Ismat 24 September 2018 (has links)
La capacité axiale et latérale des pieux foncés dans du sable de Fontainebleau NE34 ont été étudié à l’aide d’essais sur modèles réduits centrifugés. L’effet de la méthode d’installation, de la densité et de la saturation du sable, du diamètre du pieu, de la géométrie de sa pointe (ouvert /fermé) et de sa rugosité sur la capacité axiale a été étudié. Une augmentation significative de la capacité en traction est observée dans les pieux foncés cycliquement, contrairement aux pieux foncés d’une manière monotone à 100 × g. La saturation du sable dense accélère la formation du bouchon lors de l'installation du pieu. L'augmentation de la rugosité du pieu et de la densité du sable accroissent significativement le frottement latéral des pieux testés. Dans tous les cas, les capacités de pieux sont comparées aux codes de dimensionnement des éoliennes offshore. Une étude paramétrique de l'effet de la méthode d'installation, de l'excentricité de la charge et de la saturation du sable sur la réponse latérale des pieux foncés est ensuite réalisée grâce à l'utilisation d'un pieu instrumentée. Le pieu est chargé d’une manière monotone puis un millier de cycles sont appliqués. Une nouvelle méthode a été développée pour la détermination des constantes d'intégration pour déterminer le profil de déplacement latéral du pieu. La méthode d'installation influence directement le comportement global (moment maximum et déplacement latéral) et local (courbes p-y) des pieux. L'effet de l'excentricité de la charge et de la saturation du sable sur le comportement des pieux est également présenté. Dans chaque cas, une comparaison avec les courbes p-y extraites du code DNVGL est réalisée. / The axial and lateral capacity of piles jacked in Fontainebleau sand NE34 are studied using centrifuge modelling at 100×g. The effect of the installation method, sand density and saturation, pile diameter and pile tip geometry (open or closed-ended) and pile roughness on the axial capacity of piles are firstly studied. A significant increase in the tension capacity is observed in cyclically-jacked piles unlike piles monotonically jacked at 100×g. The saturation of dense sand accelerates plug formation during pile installation. The increase in pile roughness and sand density increases significantly the shaft resistance of the piles tested here. For all the cases, pile capacities are compared with the current design codes for offshore wind turbines. A parametric study of the effect of the installation method, load eccentricity and sand saturation on the lateral response of jacked piles is then realized using of an instrumented pile. The pile is loaded monotonically, then a thousand cycles are applied. A new methodology has been developed for determining of the constants needed in the integration procedure to identify the lateral displacement profile of the pile. The installation method influences directly the global (maximum moment and lateral displacement) and local behaviour (p-y curves) of the piles. The effect of the load eccentricity and sand saturation on the behaviour of the piles is also presented. In each case a comparison with the p-y curves extracted from the DNVGL code is realized.
|
6 |
Scour effects on lateral behavior of pile foundationsLin, Yunjie 05 September 2019 (has links)
Scour is a phenomenon of soil erosion around foundations under currents and waves. It is a major cause for the disruption to water-borne structures such as bridges and marine structures. Pile foundations supporting these structures are required to be designed against the scour damage. However, at present, there is no accepted method for the design of piles in scoured conditions probably due to an inadequate understanding of scour effects on foundations.
Although numerous efforts have been made to evaluate the scour effects on single piles using numerical simulations and centrifuges tests, the scour susceptibility of piles in different soil properties is still not well understood. Furthermore, there is no study concerning scour effects on the lateral responses of pile groups. Therefore, a series of three-dimensional finite element (FE) parametric analyses were conducted to investigate scour effects on lateral behavior of both single piles and free-head pile groups by varying scour-hole dimensions, soil properties, pile properties, and pile group configurations. Moreover, to facilitate the routine design, a modified p-y method that was modified based on the widely used p-y method was proposed for both scoured single piles and pile groups, and was validated against the results from the FE analyses. The results show that scour induced lateral capacity loss to both single piles and pile groups, which was approximately 10% more in dense sands than that in loose sands. Simplification of local scour as a general scour that has been commonly used in general design practice resulted in a maximum of 17% underestimate of lateral capacity of pile foundations. Pile groups were more susceptible to scour than single piles under equivalent scour conditions. A pile group with smaller pile spacing or larger pile numbers tended to experience less lateral capacity loss due to scour. / Graduate / 2020-08-19
|
7 |
Lateral Resistance of Pipe Piles Near 20-ft Tall MSE Abutment Wall with Strip ReinforcementsBesendorfer, Jason James 01 July 2015 (has links)
Full scale lateral load testing was performed on four 12.75x0.375 pipe piles spaced at 3.9, 2.9, 2.8, and 1.7 pile diameters behind an MSE wall which was constructed for this research to determine appropriate reduction factors for lateral pile resistance based on pile spacing behind the back face of the wall. The load induced on eight soil reinforcements located at various transverse distances from the pile and at different depths was monitored to determine the relationship between lateral load on the pile and load induced in the reinforcement. Each pile was loaded towards the wall in 0.25 in. increments to a total deflection of 3.0 in. Additionally, wall panel displacement was also monitored to determine if it remained in acceptable bounds. The results of the research indicate that pile resistance tends to decrease as spacing decreases. P-multipliers for the 3.9, 2.9, 2.8, 1.7D tests were found to be 1.0, 1.0, 1.0, and 0.5, respectively using back-analysis with the computer model LPILE. However, these multipliers are higher than expected based on previous testing and research. Piles spaced further than 3.8D can be assumed to have no interaction with the wall. The resistance of piles spaced closer to the wall than 3.8D can be modeled in LPILE using a p-multiplier less than 1.0. The reinforced backfill can be modeled in LPILE using the API Sand (1982) method with a friction angle of 31º and a modulus of approximately 60 pci when a surcharge of 600 psf is applied. If no surcharge is applied, a friction angle of 39º and modulus of 260 pci is more appropriate. Maximum wall panel displacement was highest for the 2.8D test and was 0.35 in. at 3.0 in. of pile head displacement. For all the other tests, the maximum wall displacement at 3.0 in. of pile head displacement was similar and was approximately 0.15 inches. Induced load in the soil reinforcement increases with depth to the 2nd or 3rd layer of reinforcement after which it decreases. Induced load in the reinforcement increases as pile spacing decreases. Induced load in the reinforcement decreases rapidly with increased transverse distance from the pile. Induced load in the reinforcement can be estimated using a regression equation which considers the influence of pile load, pile spacing behind the wall, reinforcement depth or vertical stress, and transverse spacing of the reinforcement.
|
8 |
Performance of suction caissons with a small aspect ratioChen, Ching-Hsiang, active 2013 10 February 2014 (has links)
Suction caissons with a smaller aspect (length to diameter) ratio are increasingly used for supporting offshore structures, such as wind turbines and oil and gas production facilities. The design of these stubbier foundations is usually governed by lateral loads from wind, waves, or currents. It is desired to have more physical understanding of the behavior of less slender suction caissons under cyclic lateral loading condition and to have robust design tools for analyzing these laterally loaded caissons.
In this study, one-g model tests with 1:25 and 1:50 suction can foundation scale models with an aspect ratio of one are conducted in five different soil profiles: normally consolidated clay, overconsolidated clay, loose siliceous sand, cemented siliceous sand, and cemented calcareous sand. This test program involves monitoring settlements, lateral displacements (walking), tilt, lateral load and pore water pressures in the suction can during two-way cyclic lateral loading at one, three and five degrees of rotation. The model foundations are monitored during installation, axial load tests, and pullout tests.
In one and two-degree (±0.5 and ±1 degree) rotation tests, the suction can does not have significant walking or settlement in all the five soil profiles after 1000 load cycles. However, more significant walking or settlement may occur at extreme conditions such as the 5-degree (±2.5 degrees) rotation tests. Gaps between the foundation wall and the soil may also form in these extreme conditions in overconsolidated clay, cemented siliceous sand, and cemented calcareous sand.
Plastic limit analysis, finite element analysis, and finite difference analysis are used to evaluate the laterally loaded suction can in clay. The plastic limit analysis originally developed for more slender suction caissons appears to predict a lateral capacity close to the measured short-term static capacity of the caisson with an aspect ratio of one when undisturbed undrained shear strength of soil is used. However, this plastic limit model underestimates the long-term cyclic lateral load capacity of the caisson when the remolded undrained shear strength was used. The finite element model developed in this study can simulate the development and effect of a gap between the foundation and surrounding soil as observed in the experiments in overconsolidated clay. The lateral load-displacement response predicted by this finite element model matches well with the experimental data. Finally, finite difference analysis for a rigid caisson with lateral and rotational springs was developed by fitting the lateral load-displacement response of the suction can in clay. The calibrated p-y curves for rigid caisson are significantly stiffer and have higher ultimate resistance than the p-y curves recommended by API which is consistent with other studies. This finite difference model provides an efficient approach to analyze a laterally loaded caisson with a small aspect ratio in clay. / text
|
9 |
Numerical Modeling of Seafloor Interation with Steel Catenary RiserYou, Jung Hwan 2012 August 1900 (has links)
Realistic predictions of service life of steel catenary risers (SCR) require an accurate characterization of seafloor stiffness in the zone where the riser contacts the seafloor, the so- called touchdown area (TDA). This paper describes the key features of a seafloor-riser interaction model based on the previous experimental model tests. The seafloor is represented in terms of non-linear load-deflection (P-y) relationships, which are also able to account for soil stiffness degradation due to vertical cyclic loading. The P-y approach has some limitations, but simulations show good agreement with experimental data. Hence, stiffness degradation and rate effects during penetration and uplift motion (suction force increase) of the riser are well captured through comparison with previous experimental tests carried out at the Centre for Offshore Foundation Systems (COFS) and Norwegian Geotechnical Institute (NGI).
The analytical framework considers the riser-seafloor interaction problem in terms of a pipe resting on a bed of springs, and requires the iterative solution of a fourth-order ordinary differential equation. A series of simulations is used to illustrate the capabilities of the model. Due to the non-linear soil springs with stiffness degradation it is possible to simulate the trench formation process and estimate deflections and moments along the riser length. The seabed model is used to perform parametric studies to assess the effects of stiffness, soil strength, amplitude of pipe displacements, and riser tension on pipe deflections and bending stresses. The input parameters include the material properties (usually pipe and soil), model parameters, and loading conditions such as the amplitude of imposed dis- placements, tension, and moment. Primary outputs from this model include the deflected shape of the riser pipe and bending moments along riser length. The code also provides the location of maximum trench depth and the position where the maximum bending moment occurs and any point where user is interested in.
|
10 |
Lateral Resistance of 24-inch Statically Loaded and 12.75-Inch Cyclically Loaded Pipe Piles Near a 20-ft Mechanically Stabilized Earth (MSE) WallWilson, Addison Joseph 03 December 2020 (has links)
Installing load bearing piles within the reinforcement zone of mechanically stabilized earth (MSE) retaining walls is common practice in the construction industry. Bridge abutments are often constructed in this manner to adapt to increasing right-of-way constraints, and must be capable of supporting horizontal loads imposed by, traffic, earthquakes, and thermal expansion and contraction. Previous researchers have concluded that lateral pile resistance is reduced when pile are placed next to MSE walls but no design codes have been established to address this issue. Full –scale testing of statically applied lateral loads to four 24”x0.5” pipe piles, and cyclically applied lateral load to four 12.75”x0.375” pipe piles placed 1.5-5.3 pile diameters behind a 20-foot MSE wall was performed. The MSE wall was constructed using 5’x10’ concrete panels and was supported with ribbed strip and welded wire streel reinforcements. The computer software LPILE was used to back-calculate P-multipliers for the 24” piles. P-multipliers are used to indicate the amount of reduction in lateral resistance the piles experience due to their placement near the MSE wall. Previous researchers have proposed that any pile spaced 3.9 pile diameters (D) or more away from the MSE wall will have a P-multiplier of 1; meaning the pile experiences no reduction in lateral resistance due to its proximity to the wall. P-multipliers for piles spaced closer than 3.9D away from the wall decrease linearly as distance from the wall decreases. P-multipliers for the 24” piles spaced 5.1D, 4.1D, 3.0D, and 2.0D were 1, 0.84, 0.55, and 0.44 respectively. Lateral resistance of the 12.75” cyclically loaded piles decreased as the number of loading cycles increased. Lateral resistance of the piles when loads were applied in the direction of the wall was less than the lateral resistance of the piles when loads were applied away from the wall at larger pile head loads. The maximum tensile force experienced by the soil reinforcements generally occurred near the wall side of the pile face when the lateral loads were applied in the direction of the wall. Behind the pile, the tensile force decreased as the distance from the wall increased. Equation 5-4, modified from Rollins (2018) was found to be adequate for predicting the maximum tensile force experienced by the ribbed strip reinforcements during the static loading of the 24” pipe piles, particularly for lower loads. About 65% of the measured forces measured in this study fell within the one standard deviation boundary of the proposed equation.
|
Page generated in 0.0333 seconds