• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultimate capacity of suction caisson in normally and lightly overconsolidated clays

Sharma, Partha Pratim 29 August 2005 (has links)
Petroleum exploration and production in recent years have moved into increasingly deeper water off the continental shelf. Some of these facilities are anchored in water depths in excess of 1000 meters. Exploration and production in deep water present new technological challenges where traditional fixed platforms have given way to floating structures. Today suction caissons are the most commonly used anchorage system for permanent offshore oil production facility. The objective of this study is to numerically predict the ultimate capacity of suction caissons in normally consolidated and lightly overconsolidated clays. Representative soil profile from the Gulf of Mexico and the North Sea are taken and analyzed for suction caissons with length over diameter ratios of 2, 4, 6 & 8. Normalized failure load interaction diagrams are generated for each of the cases. The location of optimum attachment point is also reported for each of the cases. General purpose finite element computer program ABAQUS is used for the numerical prediction. The finite element study is carried out with three-dimensional models using hybrid elements. A simplified elastic perfectly plastic model with von-Mises yield criterion is used for the study. The saturated clay is treated as an incompressible material. Results of the study compares well with existing simplified method for estimating load capacity of suction caisson anchors.
2

Ultimate capacity of suction caisson in normally and lightly overconsolidated clays

Sharma, Partha Pratim 29 August 2005 (has links)
Petroleum exploration and production in recent years have moved into increasingly deeper water off the continental shelf. Some of these facilities are anchored in water depths in excess of 1000 meters. Exploration and production in deep water present new technological challenges where traditional fixed platforms have given way to floating structures. Today suction caissons are the most commonly used anchorage system for permanent offshore oil production facility. The objective of this study is to numerically predict the ultimate capacity of suction caissons in normally consolidated and lightly overconsolidated clays. Representative soil profile from the Gulf of Mexico and the North Sea are taken and analyzed for suction caissons with length over diameter ratios of 2, 4, 6 & 8. Normalized failure load interaction diagrams are generated for each of the cases. The location of optimum attachment point is also reported for each of the cases. General purpose finite element computer program ABAQUS is used for the numerical prediction. The finite element study is carried out with three-dimensional models using hybrid elements. A simplified elastic perfectly plastic model with von-Mises yield criterion is used for the study. The saturated clay is treated as an incompressible material. Results of the study compares well with existing simplified method for estimating load capacity of suction caisson anchors.
3

Fuzzy modeling of suction anchor behavior based on cyclic model tests data

Mucolli, Gent 06 May 2016 (has links)
This paper proposes a novel model that can predict the displacement of suction caisson anchors under monotonic and cyclic loading. Failure is assumed to occur when the accumulative monotonic and cyclic displacement along the load attachment point is over 60% of the diameter of the anchor. The anchors will go through lateral failure when the accumulative monotonic and cyclic displacement along the loading direction at the load attachment point is over 30% of the diameter. Hence, it is important to predict this displacement and therefore determine the expected failure of the anchor. However, it is difficult to predict displacement using the modern software without knowing the material properties of the soil and piles. Hence a new model that relies only on the normalized static load (Fa/Ff), normalized cyclic load (Fcy/Ff ), loading angle (Θ), and the number of cycles (N) is proposed. The inputs for training of the proposed model are (Fa/Ff), (Fcy/Ff), (Θ), (α) and (N). The output of the model will be the displacement normalized by the diameter of the anchor. To generalize the trained model, unused sets of data are used to validate the model. Furthermore, a comparative study is performed to evaluate the effectiveness of the proposed model. It is shown from extensive simulation that the model can accurately predict the normalized displacement of suction caisson anchors.
4

Fuzzy modeling of suction anchor behavior based on cyclic model tests data

Mucolli, Gent 06 May 2016 (has links)
This paper proposes a novel model that can predict the displacement of suction caisson anchors under monotonic and cyclic loading. Failure is assumed to occur when the accumulative monotonic and cyclic displacement along the load attachment point is over 60% of the diameter of the anchor. The anchors will go through lateral failure when the accumulative monotonic and cyclic displacement along the loading direction at the load attachment point is over 30% of the diameter. Hence, it is important to predict this displacement and therefore determine the expected failure of the anchor. However, it is difficult to predict displacement using the modern software without knowing the material properties of the soil and piles. Hence a new model that relies only on the normalized static load (Fa/Ff), normalized cyclic load (Fcy/Ff ), loading angle (Θ), and the number of cycles (N) is proposed. The inputs for training of the proposed model are (Fa/Ff), (Fcy/Ff), (Θ), (α) and (N). The output of the model will be the displacement normalized by the diameter of the anchor. To generalize the trained model, unused sets of data are used to validate the model. Furthermore, a comparative study is performed to evaluate the effectiveness of the proposed model. It is shown from extensive simulation that the model can accurately predict the normalized displacement of suction caisson anchors.
5

Inclined load capacity of suction caisson in clay

Supachawarote, Chairat January 2007 (has links)
This thesis investigates the capacity and failure mode of suction caissons under inclined loading. Parametric finite element analyses have been carried out to investigate the effects of caisson geometry, loading angle, padeye depth (i.e. load attachment point), soil profile and caisson-soil interface condition. Displacement-controlled analyses were carried out to determine the ultimate limit state of the suction caissons under inclined load and the results presented as interaction diagrams in VH load space. VH failure interaction diagrams are presented for both cases where the caisson-soil interface is fully-bonded and where a crack is allowed to form along the side of the caisson. An elliptical equation is fitted to the normalised VH failure interaction diagram to describe the general trend in the case where the caisson-soil interface is fully-bonded. Parametric study reveals that the failure envelope in the fully-bonded case could be scaled down (contracted failure envelope) to represent the holding capacity when a crack is allowed to form. A stronger effect of crack on the capacity was observed in the lightly overconsolidated soil, compared to the normally consolidated soil. The sensitivity of caisson capacity to the changes in load attachment position or loading angle was quantified based on the load-controlled analyses. It was found that, for caisson length to diameter ratios of up to 5, the optimal centreline loading depth (i.e. where the caisson translates with no rotation) is in the range 0.65L to 0.7L in normally consolidated soil, but becomes shallower for the lightly overconsolidated soil profile where the shear strength profile is more uniform. The reduction of holding capacity when the padeye position is shifted from the optimal location was also quantified for normally consolidated and lightly overconsolidated soil profiles at loading angle of 30 [degrees]. Upper bound analyses were carried out to augment the finite element study. Comparison of holding capacity and accompanying failure mechanisms obtained from the finite element and upper bound methods are made. It was found that the upper bound generally overpredicted the inclined load capacity obtained from the finite element analyses especially for the shorter caisson considered in this study. A correction factor is introduced to adjust the upper bound results for the optimal condition. Comparisons of non-optimal capacity were also made and showed that the agreement between the upper bound and finite element analyses are sensitive to the change in the centreline loading depth when the caisson-soil interface is fully bonded, but less so when a crack forms.
6

Performance of suction caissons with a small aspect ratio

Chen, Ching-Hsiang, active 2013 10 February 2014 (has links)
Suction caissons with a smaller aspect (length to diameter) ratio are increasingly used for supporting offshore structures, such as wind turbines and oil and gas production facilities. The design of these stubbier foundations is usually governed by lateral loads from wind, waves, or currents. It is desired to have more physical understanding of the behavior of less slender suction caissons under cyclic lateral loading condition and to have robust design tools for analyzing these laterally loaded caissons. In this study, one-g model tests with 1:25 and 1:50 suction can foundation scale models with an aspect ratio of one are conducted in five different soil profiles: normally consolidated clay, overconsolidated clay, loose siliceous sand, cemented siliceous sand, and cemented calcareous sand. This test program involves monitoring settlements, lateral displacements (walking), tilt, lateral load and pore water pressures in the suction can during two-way cyclic lateral loading at one, three and five degrees of rotation. The model foundations are monitored during installation, axial load tests, and pullout tests. In one and two-degree (±0.5 and ±1 degree) rotation tests, the suction can does not have significant walking or settlement in all the five soil profiles after 1000 load cycles. However, more significant walking or settlement may occur at extreme conditions such as the 5-degree (±2.5 degrees) rotation tests. Gaps between the foundation wall and the soil may also form in these extreme conditions in overconsolidated clay, cemented siliceous sand, and cemented calcareous sand. Plastic limit analysis, finite element analysis, and finite difference analysis are used to evaluate the laterally loaded suction can in clay. The plastic limit analysis originally developed for more slender suction caissons appears to predict a lateral capacity close to the measured short-term static capacity of the caisson with an aspect ratio of one when undisturbed undrained shear strength of soil is used. However, this plastic limit model underestimates the long-term cyclic lateral load capacity of the caisson when the remolded undrained shear strength was used. The finite element model developed in this study can simulate the development and effect of a gap between the foundation and surrounding soil as observed in the experiments in overconsolidated clay. The lateral load-displacement response predicted by this finite element model matches well with the experimental data. Finally, finite difference analysis for a rigid caisson with lateral and rotational springs was developed by fitting the lateral load-displacement response of the suction can in clay. The calibrated p-y curves for rigid caisson are significantly stiffer and have higher ultimate resistance than the p-y curves recommended by API which is consistent with other studies. This finite difference model provides an efficient approach to analyze a laterally loaded caisson with a small aspect ratio in clay. / text
7

Analysis of spatial variability in geotechnical data for offshore foundations

Cheon, Jeong Yeon 31 January 2011 (has links)
Deep foundations, such as piles and suction caissons, are used throughout an offshore oil and gas production facility in deepwater. Ideally, the values of geotechnical properties for foundation design are determined by results from geotechnical investigation programs performed at the site of the foundation. However, the locations for facilities are not known exactly when soil borings are drilled and the footprint of a facility in deepwater can be very large with numerous foundation elements spread out over miles. Therefore, it is not generally feasible to perform a site-specific investigation for every foundation element. The objective of this research is to assess, analyze and model spatial variability in geotechnical properties for offshore foundations. A total of 97 geotechnical investigations from 14 offshore project sites covering the past twenty years of deepwater development in the Gulf of Mexico are compiled into a database. The geologic setting is primarily a normally to slightly overconsolidated marine clay, and the property of interest for the design of deep foundations is the undrained shear strength. The magnitude and characteristics of variability in design undrained shear strengths are analyzed quantitatively and graphically. Geostatistical models that describe spatial variability in the design shear strength properties to the distance away from the available information are developed and calibrated with available information from the database. Finally, a methodology is presented for incorporating the models into a reliability-based design framework to account for spatial variability in foundation capacity. Design examples are presented to demonstrate the use of the reliability methodology. Based on the design undrained shear strength profiles for the past 20 years in this Gulf of Mexico deepwater area, the design undrained shear strength varies spatially but does not depend on the time or method for site investigations. There are nonlinear spatial relationships in the point shear strength laterally and vertically due to stratigraphy such that depth-averaged shear strengths are correlated over further distances than point shear strengths. The depositional forces are an important factor causing spatial variations in the undrained shear strength, with greater variation and less spatial correlation in the more recent hemipelagic deposits (about upper 60 feet) than the deeper turbidite deposits and along the shelf versus off the shelf. The increased conservatism required in deep foundation design due to spatial variability when site specific strength data are not available is generally small with less than a five percent increase required in design capacity in this geologic setting. / text
8

Uniaxial behaviour of suction caissons in soft deposits in deepwater

Chen, Wen January 2005 (has links)
Suction caissons are a cost-effective alternative to traditional piles in deep to ultradeep waters. No design rule has been available on the axial capacity of suction caissons as part of the mooring system in soft sediments. In this research, a series of centrifuge tests were performed using instrumented model caissons, to investigate the axial capacity and radial stress changes around caissons during installation, consolidation and vertical pullout in normally consolidated, lightly overconsolidated and sensitive clays. Total pressure transducers instrumented on the caisson wall were calibrated for various conditions. The radial total stress acting on the external wall varied almost linearly during penetration and extraction of the caisson, with smaller gradients observed during post-consolidation pullout. Minimum difference was found in the penetration resistance and the radial total stress for caissons installed by jacking or by suction, suggesting that the mode of soil flow at the caisson tip is similar under these two types of installation. Observed soil heave showed that the soil particles at the caisson tip flow about evenly outside and inside the caisson during suction installation. Comparison was made between measurements and various theoretical predictions, on both the radial stress changes during caisson installation, and the radial effective stress after consolidation. Significant under-predictions on excess pore pressure changes, consolidation times and external shaft friction ratios were found for the NGI Method, based on the assumption that the caisson wall is accommodated entirely by inward motion of the clay during suction installation. Obvious over-predictions by the MTD approach were found in both stress changes and shaft capacity of the caissons. A simple form of cavity expansion method was found to give reasonable estimations of stress changes and post-consolidation external shaft friction. A model for predicting the penetration resistance of suction caissons in clay was evaluated. Upper and lower bound values of external shaft friction ratio during uplift loading after consolidation were derived. Uplift capacity of caissons under sustained loading and cyclic loading were investigated, revealing approximately 15 to 30% reduction of the capacity compared to that under monotonic loading. External shaft friction ratios and reverse end-bearing capacity factors were both found to be significantly lower than those under monotonic loading
9

Suction caissons in sand as tripod foundations for offshore wind turbines

Senders, Marc January 2009 (has links)
[Truncated abstract] The demand for offshore wind turbines is increasing in densely populated areas, such as Europe. These constructions are typically founded on a gravity foundation or a large 'mono pile'. Gravity foundations can only be used at locations where strong soils exist and water depths are limited. Costs associated with a 'mono pile' type foundation contribute to a very large percentage of the total investment costs. This research, therefore, focuses upon a different foundation for offshore wind turbines, namely suction caissons beneath a tripod. This foundation can be used in all kinds of soil types and is cheaper than the 'mono pile' foundation, both in the amount of steel used and installation costs. Cheaper foundations can contribute to a more competitive price for offshore wind energy in comparison with other energy resources. To date, there have been relatively few studies to investigate the behaviour of this type of foundation during the installation process and during operational and ultimate loading for seabed conditions comprising dense sand. Two types of investigations were performed during this research to determine the behaviour of suction caissons beneath a tripod. Firstly, an existing computer program was extended to predict the typical loading conditions for a tripod foundation. Secondly, centrifuge tests on small scale suction caissons were performed to investigate the behaviour during the installation and loading phases. The computer program developed helped to quantify the likely ranges of environmental loading on an offshore wind turbine. For a typical 3 MW wind turbine of 90 m height, the vertical load is low at around 7 MN. During storm conditions the horizontal hydrodynamic load can be in the order of 4 MN. During normal working conditions the horizontal aerodynamic loads can reach 0.4 MN, but can increase to 1.2 MN when the pitch system malfunctions and gusts reach 30 m/s. This aerodynamic load will result in a very large contribution to the overturning moment, due to the high action point of this load. When the wind turbine is placed on top of a tripod, these large moments are counteracted by a push-pull system. ... The development of differential pressure was found to depend on the soil permeability, the extraction speed and a consolidation effect. During cyclic loading no obvious signs of a decrease in resistance were observed. During very fast cyclic loading differential pressures developed, which could increase the drained frictional resistance by approximately 40%. All centrifuge tests results were used to develop methods to predict or back calculate the installation process of suction caissons in sand and layered soil, and the behaviour during tensile and cyclic loading. These methods all use the cone resistance as the main input parameter and predict the force (or required suction) as a function of time, for a given rate of pumping or uplift displacement, in addition to the variation of suction with penetration (or force with uplift displacement). These new methods provide a useful tool in designing a reliable foundation for offshore wind turbines consisting of a tripod arrangement of suction caissons embedded in dense sand.
10

Numerical study of geotechnical penetration problems for offshore applications

Zhou, Hongjie January 2008 (has links)
The research carried out in this thesis has concentrated on the application of numerical solutions to geotechnical penetration problems in offshore engineering. Several important issues closely relevant to deep-water oil and gas developments were investigated, covering installation of suction caisson foundations, interpretation of fullflow penetrometers and shallow penetration of a cylindrical object (submarine pipeline or T-bar), all in clayey sediments such as are often encountered in deep-water sites. These problems are commonly characterised by large vertical movements of structural elements relative to the seabed. A large deformation finite element method was adopted and further developed to simulate these challenging problems, referred to as Remeshing and Interpolation Technique with Small Strain. In this approach, a sequence of small strain Lagrangian increments, remeshing and interpolation of stresses and material properties are repeated until the required displacement has been reached. This technique is able to model relative motion between the penetrating objects and the soil, which is critical for evaluating soil heave inside the caissons, the effect of penetration-induced remoulding on the resistance of full-flow penetrometers, and influence of soil surface heave on the embedment of pipelines. '...' Simple expressions were presented allowing the resistance factors for the T-bar and ball penetrometers to be expressed as a function of the rate and strain-softening parameters. By considering average strength conditions during penetration and extraction of these full-flow penetrometers, an approximate expression was derived that allowed estimation of the hypothetical resistance factor with no strain-softening, and hence an initial estimate of the stain-rate dependency of the soil. Further simulations of cyclic penetration tests showed that a cyclic range of three diameters of the penetrometers was sufficient to avoid overlap of the failure mechanism at the extremes and mid-point of the cyclic range. The ball had higher resistance factors compared with the T-bar, but with similar cyclic resistance degradation curves, which could be fitted accurately by simple expressions consistent with the strain-softening soil model adopted. Based on the curve fitting, more accurate equations were proposed to deduce the resistance factor with no strain-softening, compared with that suggested previously based on the resistances measured in the first cycle of penetration and extraction. The strain-rate dependency was similar in intact or post-cyclic soil for a given rate parameter. The resistance factor for the post-cyclic condition was higher than that for the initial conditions, to some degree depending upon soil sensitivity and brittleness parameter. For the shallow penetration of a cylindrical object, the penetration resistance profile observed from centrifuge model tests was very well captured by the numerical simulation. The mechanism of shear band shedding was reproduced by the numerical technique, although the frequency of the shear band generation and the exact shape of the heave profile were not correctly captured, which were limited by the simple strainsoftening soil model adopted.

Page generated in 0.0832 seconds