Spelling suggestions: "subject:"ppy curves"" "subject:"pyy curves""
1 |
Effects of soil slope on the lateral capacity of piles in cohesionless soilsBarker, Paul D. (Paul David) 12 March 2012 (has links)
Deep foundations, including driven piles, are used to support vertical loads of structures and applied lateral forces. Many pile supported structures, including bridges, are subjected to large lateral loads in the form of wind, wave, seismic, and traffic impact loads. In many practical situations, structures subjected to lateral loading are located near or in excavated and fill slopes or embankments. Full-scale research to examine the effects of soil slope on lateral pile capacity is limited. The purpose of this study is to examine the effects on lateral capacity of piles located in or near cohesionless soil slopes.
A full-scale lateral load testing program was undertaken on pipe piles in a cohesionless soil at Oregon State University. Five piles were tested near a 2H:1V test slope and located between 0D to 8D behind the slope crest, where D is the pile diameter. Two vertical baseline piles and three battered piles were also tested in level ground conditions. The cohesionless backfill soil was a well-graded material with a fines content of less than 10% and a relative compaction of 95%, meeting the Caltrans specification for structural backfill.
Data collected from the instrumented piles was used to back calculate p-y curves, load-displacement curves, reduction factors, and load resistance ratios for each pile. The effects of slope on lateral pile capacity are insignificant at displacements of less than 2.0 inches for piles located 2D and further from the crest. For pile located at 4D or greater from the slope crest, the effect of slope is insignificant on p-y curves. A simplified p-multiplier design procedure derived from back-calculated p-y curves is proposed to account for the effects of soil slope.
Comparisons of the full-scale results were made using proposed recommendations from the available literature. Lateral resistance ratios obtained by computer, centrifuge, and small scale-models tend to be conservative and overestimate the effects of slope on lateral capacities. Standard cohesionless p-y curve methods slightly over predict the soil resistance at very low displacements but significantly under predict the ultimate soil resistance. Available reduction factors from the literature, or p-multipliers, are slightly conservative and compare well with the back-calculated p-y curves from this study. / Graduation date: 2012
|
2 |
Physical modeling and study of the behavior of deep foundations of offshore wind turbines in sand / Modélisation physique et étude du comportement de fondations profondes d’éoliennes offshore dans du sableEl Haffar, Ismat 24 September 2018 (has links)
La capacité axiale et latérale des pieux foncés dans du sable de Fontainebleau NE34 ont été étudié à l’aide d’essais sur modèles réduits centrifugés. L’effet de la méthode d’installation, de la densité et de la saturation du sable, du diamètre du pieu, de la géométrie de sa pointe (ouvert /fermé) et de sa rugosité sur la capacité axiale a été étudié. Une augmentation significative de la capacité en traction est observée dans les pieux foncés cycliquement, contrairement aux pieux foncés d’une manière monotone à 100 × g. La saturation du sable dense accélère la formation du bouchon lors de l'installation du pieu. L'augmentation de la rugosité du pieu et de la densité du sable accroissent significativement le frottement latéral des pieux testés. Dans tous les cas, les capacités de pieux sont comparées aux codes de dimensionnement des éoliennes offshore. Une étude paramétrique de l'effet de la méthode d'installation, de l'excentricité de la charge et de la saturation du sable sur la réponse latérale des pieux foncés est ensuite réalisée grâce à l'utilisation d'un pieu instrumentée. Le pieu est chargé d’une manière monotone puis un millier de cycles sont appliqués. Une nouvelle méthode a été développée pour la détermination des constantes d'intégration pour déterminer le profil de déplacement latéral du pieu. La méthode d'installation influence directement le comportement global (moment maximum et déplacement latéral) et local (courbes p-y) des pieux. L'effet de l'excentricité de la charge et de la saturation du sable sur le comportement des pieux est également présenté. Dans chaque cas, une comparaison avec les courbes p-y extraites du code DNVGL est réalisée. / The axial and lateral capacity of piles jacked in Fontainebleau sand NE34 are studied using centrifuge modelling at 100×g. The effect of the installation method, sand density and saturation, pile diameter and pile tip geometry (open or closed-ended) and pile roughness on the axial capacity of piles are firstly studied. A significant increase in the tension capacity is observed in cyclically-jacked piles unlike piles monotonically jacked at 100×g. The saturation of dense sand accelerates plug formation during pile installation. The increase in pile roughness and sand density increases significantly the shaft resistance of the piles tested here. For all the cases, pile capacities are compared with the current design codes for offshore wind turbines. A parametric study of the effect of the installation method, load eccentricity and sand saturation on the lateral response of jacked piles is then realized using of an instrumented pile. The pile is loaded monotonically, then a thousand cycles are applied. A new methodology has been developed for determining of the constants needed in the integration procedure to identify the lateral displacement profile of the pile. The installation method influences directly the global (maximum moment and lateral displacement) and local behaviour (p-y curves) of the piles. The effect of the load eccentricity and sand saturation on the behaviour of the piles is also presented. In each case a comparison with the p-y curves extracted from the DNVGL code is realized.
|
3 |
Statnamic Lateral Load Testing and Analysis of a Drilled Shaft in Liquefied SandBowles, Seth I. 02 December 2005 (has links) (PDF)
Three progressively larger statnamic lateral load tests were performed on a 2.59 m diameter drilled shaft foundation after the surrounding soil was liquefied using down-hole explosive charges. An attempt to develop p-y curves from strain data along the pile was made. Due to low quality and lack of strain data, p-y curves along the test shaft could not be reliably determined. Therefore, the statnamic load tests were analyzed using a ten degree-of-freedom model of the pile-soil system to determine the equivalent static load-deflection curve for each test. The equivalent static load-deflection curves had shapes very similar to that obtained from static load tests performed previously at the site. The computed damping ratio was 30%, which is within the range of values derived from the log decrement method. The computer program LPILE was then used to compute the load-deflection curves in comparison with the response from the field load tests. Analyses were performed using a variety of p-y curve shapes proposed for liquefied sand. The best agreement was obtained using the concave upward curve shapes proposed by Rollins et al. (2005) with a p-multiplier of approximately 8 to account for the increased pile diameter. P-y curves based on the undrained strength approach and the p-multiplier approach with values of 0.1 to 0.3 did not match the measured load-deflection curve over the full range of deflections. These approaches typically overestimated resistance at small deflections and underestimated the resistance at large deflections indicating that the p-y curve shapes were inappropriate. When the liquefied sand was assumed to have no resistance, the computed deflection significantly overestimated the deflections from the field tests.
|
4 |
BEHAVIOUR OF BURIED PIPELINES SUBJECT TO NORMAL FAULTINGSAIYAR, MASOUMEH 01 February 2011 (has links)
Thesis (Ph.D, Civil Engineering) -- Queen's University, 2011-01-31 20:52:11.162 / One of the most severe hazards for buried pipelines, which are sometimes referred to as lifelines due to their essential role in delivering vital resources, is the hazard due to Permanent Ground Deformation (PGD). Earthquake induced PGD can be caused by surface faulting, landslides and seismic settlement. In this thesis, the behaviour of buried pipelines subject to normal faulting has been experimentally investigated through a series of centrifuge tests performed on both continuous and jointed pipelines. Both pipe and soil displacements were measured using image analysis. Signal processing techniques were then developed to filter this data so as to enable the calculation of curvature and other aspects of the response from the observed pipe deformations.
First, a series of centrifuge tests was conducted on continuous pipelines of varying materials, representing a wide range of pipe stiffness relative to the soil and investigating the effect of pipe stiffness relative to the soil on soil-pipe interaction. The experimentally derived p-y curves at different locations along the pipe were compared to the recommended soil-pipe interaction models in the relevant guidelines. These p-y curves showed that the central shearing region was not captured well with independent soil springs. The response of the pipelines predicted by the ALA (2001) guideline, however, was shown to match the experimental data within 50%.
Two new simplified design approaches were then developed. The first features calculations based on simplified pressure distributions. The second featured peak curvature normalized using a characteristic length, ipipe, the distance from peak to zero moment.
A series of centrifuge tests using brittle pipes was also performed. The pipes were buried at three different depths, and the post-failure fracture angle of the pipe was measured to be used as an input for design of liners. Based on the experimental data, a computationally efficient approach was developed to estimate the initial fracture angle which occurs immediately after the pipe breaks.
The last series of centrifuge tests was conducted on jointed pipelines with five different joint stiffnesses to investigate the flexural behaviour of jointed pipelines under normal faulting. Based on the observed pipe response, a simplified kinematic model was proposed to estimate the maximum joint rotation for a given geometry, pipe segment length, and the magnitude of the imposed ground displacement. / Ph.D
|
5 |
Full-Scale Lateral-Load Tests of a 3x5 Pile Group in Soft Clays and SiltsSnyder, Jeffrey L. 15 March 2004 (has links) (PDF)
A series of static lateral load tests were conducted on a group of fifteen piles arranged in a 3x5 pattern. The piles were placed at a center-to-center spacing of 3.92 pile diameters. A single isolated pile was also tested for comparison to the group response. The subsurface profile consisted of cohesive layers of soft to medium consistency underlain by interbedded layers of sands and fine-grained soils. The piles were instrumented to measure pile-head deflection, rotation, and load, as well as strain versus pile depth.
|
Page generated in 0.4321 seconds