1 |
Characteristic Analysis of Acid Mine Drainage Precipitates for the Optimization of Rare Earth Extraction ProcessesSaber, Scott William 25 October 2018 (has links)
Acid mine drainage (AMD) forms when sulfur bearing rocks such as pyrite, are exposed to air and water. The oxidation of these minerals leads to the generation of sulfuric acid, which in turn mobilizes metals such as iron, aluminum, manganese, and others. If left untreated, AMD can cause severe harm to the surrounding ecosystem. By law, mining companies are required to treat AMD, often by oxidizing the contaminated water, raising the pH with a chemical additive, and precipitating the metals out of solution. Recent studies at West Virginia University and Virginia Tech have shown that AMD and the treatment precipitates (AMDp) are enriched in rare earth elements (REEs). Given the importance of REEs to modern technology, as well as potential supply restrictions, subsequent research has attempted to identify promising methods to extract and recovery REEs from AMD and AMDp. Prior studies have shown that the physical characteristics of AMDp can vary considerably from site to site, and a robust processes scheme must account for any site-specific disparities.
To better understand the inherent variability of AMDp, a scientific study was commissioned to investigate a standard method of characterizing AMDp for the optimization of rare earth extraction processes. The tests developed in this work define the total acid dose needed to dissolve AMDp at various target pH points. Through the course of the study, over 150 unique AMDp samples were evaluated, and comparative analyses were conducted on samples from different sites as well as replicate samples from the same sites. The resultant dataset was analyzed using an empirical model, and a statistical analysis was conducted to correlate the model parameters and other AMDp physical properties. Relationships between elemental assays, moisture, and fitting parameters of the empirical models were found. These results ultimately led to a recommendation for future treatment of AMD and prospective sites. / MS / Acid mine drainage (AMD) is a longstanding environmental issue that is caused when sulfur-bearing rocks are exposed to the environment during the mining process. By law, companies are required to treat AMD prior to discharging the water back into the environment. This treatment process creates a waste byproduct, AMD precipitate, that largely consists of metal hydroxides, including iron, aluminum, manganese, and others. Historically, AMD precipitate has been considered an undesirable waste that must be carefully disposed either in old mine workings or in permanent storage cells. However, recent research has shown that AMD precipitate contains elevated concentrations of rare earth elements (REEs). REEs are a group of chemically similar elements that are well known for their use in several modern technologies, including magnets, catalysts, glasses, light-weight metal alloys, and other high-tech uses. REEs are often sparsely concentrated in nature and rarely form ore deposits of a commercial grade. As a result, several private companies and government agencies have sought alternative sources of REEs. Prior research has shown that AMD precipitate may be a suitable alternative source; however, the chemical and physical nature of AMD varies considerably between different sites. This research seeks to utilize a standard characterization test to identify the characteristics of AMD precipitate that ultimately dictate process amenability. Throughout the course of the study, over 150 unique AMD precipitate samples were analyzed, and the cumulative results show which class of sites constitute the most promising prospecting targets.
|
2 |
Estudo do efeito do ph e da adsorção de surfactante catiônico na redispersão de nanocristais de celulose em águaGomes , Kerolin Aparecida Alves 31 January 2018 (has links)
Submitted by Eunice Novais (enovais@uepg.br) on 2018-06-15T18:10:58Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Kerolin Ap Alves Gomes.pdf: 2922365 bytes, checksum: ccbcc929da0afe5876dd9273d11519e6 (MD5) / Made available in DSpace on 2018-06-15T18:10:58Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Kerolin Ap Alves Gomes.pdf: 2922365 bytes, checksum: ccbcc929da0afe5876dd9273d11519e6 (MD5)
Previous issue date: 2018-01-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A utilização de materiais ambientalmente corretos, de fonte renovável, assim como a celulose, tem se apresentado como assunto de interesse para muitos pesquisadores. Neste trabalho os nanocristais de celulose (NCC) foram extraídos a partir da celulose microcristalina comercial (CMC) com posterior ajuste de pH e modificação superficial com o surfactante catiônico brometo de cetil trimetil amônio (CTAB), objetivando-se realizar a secagem dos NCC e posterior redispersão em água. Para tanto, foram estudadas as influências dos procedimentos de diálise, da faixa de pH, da modificação superficial e também da técnica de secagem sobre a estabilidade coloidal e também sobre a distribuição de tamanhos de partículas. Três técnicas de secagem foram estudadas: (1) secagem em estufa, (2) secagem por liofilização e (3) secagem por spray drying. Na secagem em estufa houve a formação de aglomerados indissolúveis impedindo a redispersão dos NCC, nesta técnica foi avaliado principalmente o efeito do ajuste de pH, observando-se que para condições ácidas de pH ocorre a degradação dos NCC. Na secagem por liofilização foi possível redispersar os NCC em água, porém não foi obtido um material seco estável, pois ocorreu a dessorção da água. Observou-se também que para adições maiores do contra-íon +, obtiveram-se melhores resultados de redispersão quanto à distribuição de tamanho de partículas. Na técnica de secagem por spray drying foi testada a influência do surfactante sobre a redispersão. A adsorção do surfactante catiônico à superfície dos NCC foi confirmada pela técnica de espectroscopia no infravermelho por transformada de Fourier (FTIR). Ficou demonstrado que com a adição de 1% de surfactante às suspensões de NCC é possível redispersá-las obtendo características muito próximas as das suspensões antes do processo de secagem, no entanto, observou-se perda da estabilidade coloidal para algumas amostras após a redispersão. As técnicas de microscopia eletrônica de varredura (MEV), difração de raios X (DRX), análise termogravimétrica (ATG) e análise reológica foram usadas para caracterizar o material obtido na secagem por spray drying, que foi determinada como a melhor técnica de secagem. A morfologia das partículas apresentou-se no formato esférico, com a formação de aglomerados. Foram obtidos elevados índices de cristalinidade para as amostras com adsorção do surfactante CTAB, porém com reduzida estabilidade térmica. A avaliação da viscosidade cinemática indicou um comportamento pseudoplástico para as suspensões do NCC e um aumento na viscosidade das amostras após a secagem e redispersão indicou a formação de aglomerados / The use of environmentally friendly materials from renewable sources, as well as cellulose, has been presented as a subject of interest to many researchers. In this work the cellulose nanocrystals (CNC) were extracted from commercial microcrystalline cellulose (CMC) with subsequent pH adjustment and surface modification with the cationic surfactant cetyl trimethyl ammonium bromide (CTAB), aiming to dry the CNC and rehydrate them in water. The influence of dialysis procedure, pH range, surface modification and drying technique on colloidal stability and particle size distribution were studied. Three drying techniques were studied: (1) oven drying, (2) drying by lyophilization and (3) spray drying. The oven drying process showed the formation of indissoluble agglomerates preventing the redispersion of CNC, in this technique the effect of the pH adjustment was evaluated, and it was observed that for acidic pH conditions the degradation of CNC occurs. On drying by lyophilization it was possible to redisperse the CNC in water, but it was not possible to obtain a stable dry material, as water desorption occurred. It was also observed that for larger additions of the counterion +, better particle size distribution results were obtained for the redispersed suspensions. The influence of the surfactant on redispersion was tested in the spray drying drying technique. The adsorption of the cationic surfactant to the surface of the CNC was confirmed by the Fourier transform infrared spectroscopy (FTIR) technique. It has been shown that with the addition of 1% surfactant to the CNC suspensions it is possible to redisperse them obtaining characteristics very close to those of the suspensions prior to the drying process, however, loss of colloidal stability has been observed for some samples after redispersion. Scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and rheological analysis were used to characterize the material obtained by spray drying, which was determined as the most suitable drying technique. The particles were presented with a spherical morphology and with the formation of agglomerates. High crystallinity indexes were obtained for samples with adsorption of CTAB surfactant, but with low thermal stability. The kinematic viscosity assessment indicated a pseudoplastic behavior for the CNC suspensions and an increase in the viscosity of the samples after drying and redispersion indicated the formation of agglomerates.
|
Page generated in 0.0739 seconds