• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Packaging Film Mechanical Integrity Using a Standardized Scratch Test

Hare, Brian 2011 August 1900 (has links)
Polymeric packaging films see widespread use in the food packaging industry, and their mechanical integrity is paramount to maintaining product appearance, freshness, and overall food safety. Current testing methods, such as tensile or puncture tests, do not necessarily correlate well with field damages that are observed to be scratch-like. The standardized linearly increasing load scratch test is investigated as a new means of evaluating the mechanical integrity of packaging films. Mechanical clamp and vacuum fixtures were considered for securing the films to a set of backing materials and tested under various testing rates and film orientation conditions. Film performance was evaluated according to their puncture load. Based on the above study, the vacuum fixture offers the most consistent and meaningful results by providing a more intimate contact between film and backing and minimizing uncontrolled buckling of the film during testing. Additional testing was also carried out on a commercial film to confirm similarity between damage observed in the scratched films and that from the field. The scratch test gives good correlation between field performance and scratch test results on a set of commercial films. The usefulness of the scratch test methodology for packaging film mechanical integrity evaluation is discussed. Scratch-induced damages on multi-layer commercial packaging films are investigated using cross- and longitudinal-sectioning. Scratch test results show clear distinction between the two tested systems on both the inside and outside surfaces. Microscopy was performed to investigate the feasibility of utilizing this methodology as a tool for packaging film structure evaluation by determining the effect each layer has on the resistance of scratch damages. It is shown that the film showing superior scratch test results also shows significantly better stress distribution through its layers during the scratch test, as well as better layer adhesion during severe deformation. The scratch test shows good ability to provide more in-depth film mechanical integrity testing by allowing for layer-by-layer analysis of damages and layer adhesion after testing.
2

Antimicrobial packaging system for optimization of electron beam irradiation of fresh produce

Han, Jaejoon 30 October 2006 (has links)
This study evaluated the potential use of an antimicrobial packaging system in combination with electron beam irradiation to enhance quality of fresh produce. Irradiated romaine lettuce up to 3.2 kGy showed negligible (p > 0.05) changes in color, but texture and sensory attributes were less acceptable with increased dose. We established the antimicrobial effectiveness of various active compounds incorporated into the low-density polyethylene (LDPE)/polyamide films to increase radiation sensitivity of surrogate bacteria (Listeria innocua and Escherichia coli). All films showed inhibition zones in an agar diffusion test. In the liquid culture test, the active compounds reduced the specific growth rate and decreased final cell concentration of strains. Films incorporated with active compounds increased the radiation sensitivity of the tested strains, demonstrating their potential to reduce the dose required to control microbial contamination using electron beam technology. The active compounds maintained their antimicrobial activity by exposure to ionizing radiation up to 3 kGy. Antimicrobial activity of LDPE/polyamide films incorporated with transcinnamaldehyde was tested with fresh-cut romaine lettuce. Total aerobic plate counts (APC) and yeast and mold counts (YMC) were determined as a function of dose (0, 0.5, and 1.0 kGy) for 14 days of storage at 4°C. Irradiation exposure significantly lowered APCs of lettuce samples by 1-log CFU/g compared to the non-irradiated controls; however, it only slightly reduced YMCs. The effectiveness of using irradiation with antimicrobial films was enhanced with increased radiation dose and transcinnamaldehyde concentration. Electron beam irradiation up to 20 kGy did not affect the tensile strength and toughness of the polymeric films. The film’s flexibility and barrier properties were significantly improved by exposure to 20 kGy. The addition of an active compound did not affect the tensile strength and barrier properties of the films, but decreased the percent elongation-at-break and toughness, making them slightly more brittle. Ionizing radiation affected the release kinetics of the antimicrobial agent from the packaging material into a model food system. Irradiated films exhibited slower release rates than non-irradiated film by 69%. In addition, release rate was lower at 4ºC by 62.6% than at 21-35ºC. The pH of the simulant solution affected release rate with pH 4 yielding higher rates than pH 7 and 10.

Page generated in 0.0573 seconds