1 |
Modelling of Hydrogen Adsorption/Desorption in Metal Hydride ReactorAkanji, O, Kolesnikov, AV 01 January 2010 (has links)
Abstract
In order to make efficient hydrogen storage utilization as a fuel in fuel cell plant, there is need
for its effective storage. Previous studies on hydrogen storage considered the hydrogen adsorption/
desorption in radial direction only which is one dimensional approach in this project, two dimensional
computational model is implemented in CFD software to simulate the diffusion and heating
of hydrogen in both radial and axial directions. The model consists of a system of partial differential
equation (PDE) describing two-dimensional heat and mass transfer of hydrogen in porous matrix.
Mathematical model was developed to simulate heat and mass transfer in a packed bed reactor with
metal hydride as a material for hydrogen absorption and desorption. Importance of bed porosity
radial distribution and correct equation for effective thermal conductivity is discussed.
|
2 |
Transport processes in packed beds of low tube to particle diameter ratioFreiwald, Martin Georg January 1991 (has links)
No description available.
|
3 |
The potential of the radially-stratified packed bed as catalytic chemical reactorHalliday, K. January 1986 (has links)
No description available.
|
4 |
Models for the analysis of thermal dispersion in packed bedsSabri, M. N. January 1985 (has links)
No description available.
|
5 |
Heat and momentum transfer in porous material used for thermal energy storageAbou-Ziyan, H. Z. Z. January 1988 (has links)
No description available.
|
6 |
Magnetic Resonance Imaging of columnar reactorsPotters, Kimberlee January 1994 (has links)
No description available.
|
7 |
Flow Through, 2D/3D Nanoplatelet Supports for Packed Beds and ColumnsMeng, Xuewei 19 November 2018 (has links)
High performance catalyst supports and packing materials are playing an increasing role in many reactions and separations. The dispersion in packed bed reactors and separation columns can be reduced by the development of new packing structures having open and connected pore geometries. The application of new materials in High Performance Liquid Chromatography (HPLC) with sub 5 micron particle sizes are growing. These small particles offer better performance and improved bed and column efficiencies. Recently developed, twinned Alumina Nanosheets (TAN) are 2D/3D nanomaterials that offer promising open geometries for use as column packings and catalysts supports. They have a small particle size (4 um in length, 1 um in width and 0.1 um in thickness) and excellent flow-through capabilities. TANs have recently been used to successfully produce high throughput dynamic membranes.
However, their resistance to compaction is unknown and thought to be limited. A technique was developed to reinforce the TAN nanomaterial. Two binder materials were tested as reinforcing agents; SiO2 and AlH6O12P3. The binder-reinforced TANs were then packed into columns. Eleven columns having a 4 cm initial packing length were assembled. Tracer injection studies were performed to investigate the flow behavior and dispersion in these columns. SEM images were also taken to characterize the particles before and after compaction. The best results were obtained using a binding solution containing 7.5 (wt%) SiO2. The binder SiO2 offered a better resistance to compaction than the AlH6O12P3. The Peclet (Pe) number for the columns ranged from 22 to 648. When the content of SiO2 increased from 0 to 7.5 (wt%), the columns showed an increase in the Pe number. When SiO2 increased from 7.5 to 20 (wt%), the columns showed a decrease in the Pe number. However, AlH6O12P3 did not present any relation between the binder content and the Pe number.
The results of this work demonstrate that reinforced TANs, are a new type of material that offers a packing with an open pore structure and improved channel connectivity. The new reinforced material offers considerable potential in many applications such as catalysis and separations over conventional materials. If they are used as packing materials in HPLC columns or packed bed reactors, they can contribute to a higher separation efficiency or an enhanced conversion rate or productivity, bringing more advantages and benefits than ordinary packing materials.
|
8 |
Pressure Drop in a Pebble Bed ReactorKang, Changwoo 2010 August 1900 (has links)
Pressure drops over a packed bed of pebble bed reactor type are investigated. Measurement of porosity and pressure drop over the bed were carried out in a cylindrical packed bed facility. Air and water were used for working fluids.
There are several parameters of the pressure drop in packed beds. One of the most important factors is wall effect. The inhomogeneous porosity distribution in the bed and the additional wetted surface introduced by the wall cause the variation of pressure drop. The importance of the wall effects and porosity can be explained by using different bed-to-particle diameter ratios. Four different bed-to-particle ratios were used in these experiments (D/dp = 19, 9.5, 6.33 and 3.65).
A comparison is made between the predictions by a number of empirical correlations including the Ergun equation (1952) and KTA (by the Nuclear Safety Commission of Germany) (1981) in the literature. Analysis of the data indicated the importance of the bed-to-particle size ratios on the pressure drop. The comparison between the present and the existing correlations showed that the pressure drop of large bed-to-particle diameter ratios (D/dp = 19, 9.5and 6.33) matched very well with the original KTA correlation. However the published correlations cannot be expected to predict accurate pressure drop for certain conditions, especially for pebble bed with D/dp (bed-to-particle diameter ratio) </= 5. An improved correlation was obtained for a small bed-to-particle diameter ratio by fitting the coefficients of that equation to experimental database.
|
9 |
Imobilização de ciclodextrina glicosiltransferase para produção de ciclodextrinas: catálise em batelada e catálise contínua em reator de leito fixo / Immobilization of cyclodextrin glycosyltransferase for the production of cyclodextrins: catalysis in batch and continuous catalysis in fixed bed reactorSchöffer, Jessie da Natividade January 2013 (has links)
A ciclodextrina glicosiltransferase (CGTase, EC 2.4.1.19) faz parte da família das α-amilases e se destaca por ser a única enzima capaz de produzir ciclodextrinas (CDs). Esses oligossacarídeos cíclicos possuem a capacidade de formar complexos de inclusão com uma variedade de moléculas, alterando suas características como, por exemplo, solubilidade, volatilidade e estabilidade. Desta forma, CDs tem encontrado aplicação nas mais diversas áreas. Na indústria de alimentos, se destacam por serem potenciais estabilizantes naturais. Buscando alternativas viáveis para produção destas ciclodextrinas, neste trabalho, a enzima CGTase foi imobilizada covalentemente em esferas de quitosana e posteriormente utilizada em um reator enzimático para uso contínuo. O rendimento da imobilização foi de aproximadamente 100 %, com uma carga de 20 mg de enzima por grama de suporte seco. O processo de imobilização foi capaz de manter o comportamento da enzima frente à variação de pH e temperatura de reação, apresentando pH ótimo em 5,0 e a faixa de temperatura ótima de 70 a 95 ºC, para ambos. A estabilidade conferida ao catalisador imobilizado possibilitou sua reutilização, 61 % da sua atividade inicial foi mantida após 100 ciclos de reação. Durante utilização contínua, realizada em um reator de leito fixo, analisou-se a influência da taxa de fluxo e da concentração do substrato na geração de β-CD. A máxima produção (1,32 g / L) foi alcançada utilizando-se 4 % de amido solúvel em uma taxa de fluxo de 3 mL / min. Além disso, o biocatalisador apresentou uma ótima estabilidade operacional a 60 °C, mantendo 100 % da atividade inicial após 100 h de uso contínuo. Estes resultados demonstram que o desempenho do reator é diretamente afetado pelos parâmetros analisados e que a produção pode ser otimizada por regulação simples na velocidade de fluxo, ou pela concentração do substrato; e sugerem a possibilidade de utilizar este biocatalisador imobilizado na produção contínua de CDs. / Cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) is member of the family α-amylase and is known for being the only enzyme able to produce cyclodextrins (CDs). These cyclic oligosaccharides have the ability to form inclusion complexes with a variety of molecules, changing its characteristics, for example, solubility, volatility and stability. Therefore, CDs have found application in several fields. In the food industry stand out for being potential natural stabilizers. Seeking to alternatives for producing these cyclodextrins, in this work, the CGTase enzyme was immobilized covalently on chitosan beads and subsequently used in enzymatic reactor for continuous use. The immobilization yield was high, reaching about 100 %, representing a load of 20 mg enzyme per gram of dry support. The immobilization process was capable of maintaining the behavior of the enzyme to the variation of pH and temperature of reaction, with pH optimum at 5.0 and the optimal temperature range of 70 - 95 ° C, for both. The stability afforded to the immobilized catalyst made possible its reuse, maintaining 61 % of its initial activity after 100 cycles of reaction. During its continuous use, in a packed bed reactor, we analyzed the influence of flow rate and concentration of the substrate in the generation of β-CD. The maximum yield (1.32 g / L) was achieved using 4 % soluble starch at a flow rate of 3 mL / min. In addition, the biocatalyst showed a great operational stability at 60 ° C, maintaining 100 % of initial activity after 100 h of continuous use. These results demonstrate that the performance is directly affected by the parameters analyzed and that the production can be optimized by simple adjustment in flow rate through the reactor, or the substrate concentration used and suggests the possibility of using this biocatalyst immobilized to the continuous production of CDs.
|
10 |
Imobilização de ciclodextrina glicosiltransferase para produção de ciclodextrinas: catálise em batelada e catálise contínua em reator de leito fixo / Immobilization of cyclodextrin glycosyltransferase for the production of cyclodextrins: catalysis in batch and continuous catalysis in fixed bed reactorSchöffer, Jessie da Natividade January 2013 (has links)
A ciclodextrina glicosiltransferase (CGTase, EC 2.4.1.19) faz parte da família das α-amilases e se destaca por ser a única enzima capaz de produzir ciclodextrinas (CDs). Esses oligossacarídeos cíclicos possuem a capacidade de formar complexos de inclusão com uma variedade de moléculas, alterando suas características como, por exemplo, solubilidade, volatilidade e estabilidade. Desta forma, CDs tem encontrado aplicação nas mais diversas áreas. Na indústria de alimentos, se destacam por serem potenciais estabilizantes naturais. Buscando alternativas viáveis para produção destas ciclodextrinas, neste trabalho, a enzima CGTase foi imobilizada covalentemente em esferas de quitosana e posteriormente utilizada em um reator enzimático para uso contínuo. O rendimento da imobilização foi de aproximadamente 100 %, com uma carga de 20 mg de enzima por grama de suporte seco. O processo de imobilização foi capaz de manter o comportamento da enzima frente à variação de pH e temperatura de reação, apresentando pH ótimo em 5,0 e a faixa de temperatura ótima de 70 a 95 ºC, para ambos. A estabilidade conferida ao catalisador imobilizado possibilitou sua reutilização, 61 % da sua atividade inicial foi mantida após 100 ciclos de reação. Durante utilização contínua, realizada em um reator de leito fixo, analisou-se a influência da taxa de fluxo e da concentração do substrato na geração de β-CD. A máxima produção (1,32 g / L) foi alcançada utilizando-se 4 % de amido solúvel em uma taxa de fluxo de 3 mL / min. Além disso, o biocatalisador apresentou uma ótima estabilidade operacional a 60 °C, mantendo 100 % da atividade inicial após 100 h de uso contínuo. Estes resultados demonstram que o desempenho do reator é diretamente afetado pelos parâmetros analisados e que a produção pode ser otimizada por regulação simples na velocidade de fluxo, ou pela concentração do substrato; e sugerem a possibilidade de utilizar este biocatalisador imobilizado na produção contínua de CDs. / Cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) is member of the family α-amylase and is known for being the only enzyme able to produce cyclodextrins (CDs). These cyclic oligosaccharides have the ability to form inclusion complexes with a variety of molecules, changing its characteristics, for example, solubility, volatility and stability. Therefore, CDs have found application in several fields. In the food industry stand out for being potential natural stabilizers. Seeking to alternatives for producing these cyclodextrins, in this work, the CGTase enzyme was immobilized covalently on chitosan beads and subsequently used in enzymatic reactor for continuous use. The immobilization yield was high, reaching about 100 %, representing a load of 20 mg enzyme per gram of dry support. The immobilization process was capable of maintaining the behavior of the enzyme to the variation of pH and temperature of reaction, with pH optimum at 5.0 and the optimal temperature range of 70 - 95 ° C, for both. The stability afforded to the immobilized catalyst made possible its reuse, maintaining 61 % of its initial activity after 100 cycles of reaction. During its continuous use, in a packed bed reactor, we analyzed the influence of flow rate and concentration of the substrate in the generation of β-CD. The maximum yield (1.32 g / L) was achieved using 4 % soluble starch at a flow rate of 3 mL / min. In addition, the biocatalyst showed a great operational stability at 60 ° C, maintaining 100 % of initial activity after 100 h of continuous use. These results demonstrate that the performance is directly affected by the parameters analyzed and that the production can be optimized by simple adjustment in flow rate through the reactor, or the substrate concentration used and suggests the possibility of using this biocatalyst immobilized to the continuous production of CDs.
|
Page generated in 0.0552 seconds