• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 25
  • 21
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 234
  • 234
  • 195
  • 193
  • 114
  • 80
  • 64
  • 57
  • 42
  • 39
  • 36
  • 33
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Voice flow control in integrated packet networks

Hayden, Howard Paul. January 1981 (has links)
Thesis (Elec.E.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981. / Includes bibliographical references. / by Howard Paul Hayden. / Thesis (Elec.E.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981.
172

Exploiting Flow Relationships to Improve the Performance of Distributed Applications

Shang, Hao 06 April 2006 (has links)
Application performance continues to be an issue even with increased Internet bandwidth. There are many reasons for poor application performance including unpredictable network conditions, long round trip times, inadequate transmission mechanisms, or less than optimal application designs. In this work, we propose to exploit flow relationships as a general means to improve Internet application performance. We define a relationship to exist between two flows if the flows exhibit temporal proximity within the same scope, where a scope may either be between two hosts or between two clusters of hosts. Temporal proximity can either be in parallel or near-term sequential. As part of this work, we first observe that flow relationships are plentiful and they can be exploited to improve application performance. Second, we establish a framework on possible techniques to exploit flow relationships. In this framework, we summarize the improvements that can be brought by these techniques into several types and also use a taxonomy to break Internet applications into different categories based on their traffic characteristics and performance concerns. This approach allows us to investigate how a technique helps a group of applications rather than a particular one. Finally, we investigate several specific techniques under the framework and use them to illustrate how flow relationships are exploited to achieve a variety of improvements. We propose and evaluate a list of techniques including piggybacking related domain names, data piggybacking, enhanced TCP ACKs, packet aggregation, and critical packet piggybacking. We use them as examples to show how particular flow relationships can be used to improve applications in different ways such as reducing round trips, providing better quality of information, reducing the total number of packets, and avoiding timeouts. Results show that the technique of piggybacking related domain names can significantly reduce local cache misses and also reduce the same number of domain name messages. The data piggybacking technique can provide packet-efficient throughput in the reverse direction of a TCP connection without sacrificing forward throughput. The enhanced ACK approach provides more detailed and complete information about the state of the forward direction that could be used by a TCP implementation to obtain better throughput under different network conditions. Results for packet aggregation show only a marginal gain of packet savings due to the current traffic patterns. Finally, results for critical packet piggybacking demonstrate a big potential in using related flows to send duplicate copies to protect performance-critical packets from loss.
173

Flow control and routing in an integrated voice and data communication network

Ibe, Oliver Chukwudi January 1981 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 104-106. / by Oliver Chukwudi Ibe. / Sc.D.
174

Rede auto-organizada utilizando chaveamento de pacotes ópticos. / Self-organized network architecture deployed by the utilization of optical packet switching technology.

Sachs, Antonio de Campos 27 April 2011 (has links)
A tecnologia de chaveamento de pacotes ópticos comumente utiliza componentes muito complexos, relegando sua viabilidade para o futuro. A utilização de pacotes ópticos, entretanto, é uma boa opção para melhorar a granularidade dos enlaces ópticos, bem como para tornar os processos de distribuição de banda muito mais eficientes e flexíveis. Esta tese propõe simplificações nas chaves ópticas que além de tornarem o pacote óptico viável para um futuro mais próximo, permitem montar redes ópticas complexas, com muitos nós, que operam de maneira auto-organizada. A rede proposta nesta tese não possui sinalização para reserva ou estabelecimento de caminho. As rotas são definidas pacote a pacote, em tempo real, durante o seu percurso, utilizando roteamento por deflexão. Com funções muito simples realizadas localmente, a rede ganha características desejáveis como: alta escalabilidade e eficiente sistema de proteção de enlace. Estas características desejáveis são tratadas como funções da rede que emergem de funções realizadas em cada um dos nós de rede individualmente. A tese apresenta um modelo analítico estatístico, validado por simulação, para caracterização da rede. No sistema de proteção contra falhas, os cálculos realizados para redes com até 256 nós mostram que o aumento do número médio de saltos ocorre apenas para destinos localizados no entorno da falha. Para demonstrar a viabilidade de construção de chave óptica rápida simplificada utilizando somente componentes já disponíveis no mercado foi montado um protótipo, que mostrou ter um tempo de chaveamento inferior a dois nanossegundos, sendo compatível com as operações de chaveamento de pacotes ópticos. / The Optical Packet Switching (OPS) technology usually involves complex and expensive components relegating its application viability to the future. Nevertheless the OPS utilization is a good option for improving the granularity at high bit rate transmissions, as well as for operation involving flexibility and fast bandwidth distribution. This thesis proposes simplifications on optical switching devices that besides getting closer future viability enable the deployment of highly scalable and self-organized complex network architecture. The proposed network operates without resources reservation or previous path establishment. The routes are defined packet-by-packet in a real time deflection routing procedure. With simple local functions the network starts to operate with desirable performance characteristics such as high scalability and automatic protection system. Those desirable performance characteristics are treated as Emerging Functions. For the network characterization it is presented a statistical analytical model validated by simulation. In the automatic protection functions investigation the results for a 256 nodes network showed that the mean number of hops enhancement occurs only around the failure neighborhood. To demonstrate the switch viability, a prototype was fabricated utilizing components already available in the market. The switching time obtained was below two nanoseconds showing compatibility with the optical packet switching technology.
175

A multiple ant colony optimization approach for load-balancing.

January 2003 (has links)
Sun Weng Hong. / Thesis submitted in: October 2002. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 116-121). / Abstracts in English and Chinese. / Chapter 1. --- Introduction --- p.7 / Chapter 2. --- Ant Colony Optimization (ACO) --- p.9 / Chapter 2.1 --- ACO vs. Traditional Routing --- p.10 / Chapter 2.1.1 --- Routing information --- p.10 / Chapter 2.1.2 --- Routing overhead --- p.12 / Chapter 2.1.3 --- Adaptivity and Stagnation --- p.14 / Chapter 2.2 --- Approaches to Mitigate Stagnation --- p.15 / Chapter 2.2.1 --- Pheromone control --- p.15 / Chapter 2.2.1.1 --- Evaporation: --- p.15 / Chapter 2.2.1.2 --- Aging: --- p.16 / Chapter 2.2.1.3 --- Limiting and smoothing pheromone: --- p.17 / Chapter 2.2.2 --- Pheromone-Heuristic Control --- p.18 / Chapter 2.2.3 --- Privileged Pheromone Laying --- p.19 / Chapter 2.2.4 --- Critique and Comparison --- p.21 / Chapter 2.2.4.1 --- Aging --- p.22 / Chapter 2.2.4.2 --- Limiting pheromone --- p.22 / Chapter 2.2.4.3 --- Pheromone smoothing --- p.23 / Chapter 2.2.4.4 --- Evaporation --- p.25 / Chapter 2.2.4.5 --- Privileged Pheromone Laying --- p.25 / Chapter 2.2.4.6 --- Pheromone-heuristic control --- p.26 / Chapter 2.3 --- ACO in Routing and Load Balancing --- p.27 / Chapter 2.3.1 --- Ant-based Control and Its Ramifications --- p.27 / Chapter 2.3.2 --- AntNet and Its Extensions --- p.35 / Chapter 2.3.3 --- ASGA and SynthECA --- p.40 / Chapter 3. --- Multiple Ant Colony Optimization (MACO) --- p.45 / Chapter 4. --- MACO vs. ACO --- p.51 / Chapter 4.1 --- Analysis of MACO vs. ACO --- p.53 / Chapter 5. --- Applying MACO in Load Balancing --- p.89 / Chapter 5.1 --- Applying MACO in Load-balancing --- p.89 / Chapter 5.2 --- Problem Formulation --- p.91 / Chapter 5.3 --- Types of ant in MACO --- p.93 / Chapter 5.3.1 --- Allocator. --- p.94 / Chapter 5.3.2 --- Destagnator. --- p.95 / Chapter 5.3.3 --- Deallocator. --- p.100 / Chapter 5.4 --- Global Algorithm --- p.100 / Chapter 5.5 --- Discussion of the number of ant colonies --- p.103 / Chapter 6. --- Experimental Results --- p.105 / Chapter 7. --- Conclusion --- p.114 / Chapter 8. --- References --- p.116 / Appendix A. Ants in MACO --- p.122 / Appendix B. Ants in SACO. --- p.123
176

Rede auto-organizada utilizando chaveamento de pacotes ópticos. / Self-organized network architecture deployed by the utilization of optical packet switching technology.

Antonio de Campos Sachs 27 April 2011 (has links)
A tecnologia de chaveamento de pacotes ópticos comumente utiliza componentes muito complexos, relegando sua viabilidade para o futuro. A utilização de pacotes ópticos, entretanto, é uma boa opção para melhorar a granularidade dos enlaces ópticos, bem como para tornar os processos de distribuição de banda muito mais eficientes e flexíveis. Esta tese propõe simplificações nas chaves ópticas que além de tornarem o pacote óptico viável para um futuro mais próximo, permitem montar redes ópticas complexas, com muitos nós, que operam de maneira auto-organizada. A rede proposta nesta tese não possui sinalização para reserva ou estabelecimento de caminho. As rotas são definidas pacote a pacote, em tempo real, durante o seu percurso, utilizando roteamento por deflexão. Com funções muito simples realizadas localmente, a rede ganha características desejáveis como: alta escalabilidade e eficiente sistema de proteção de enlace. Estas características desejáveis são tratadas como funções da rede que emergem de funções realizadas em cada um dos nós de rede individualmente. A tese apresenta um modelo analítico estatístico, validado por simulação, para caracterização da rede. No sistema de proteção contra falhas, os cálculos realizados para redes com até 256 nós mostram que o aumento do número médio de saltos ocorre apenas para destinos localizados no entorno da falha. Para demonstrar a viabilidade de construção de chave óptica rápida simplificada utilizando somente componentes já disponíveis no mercado foi montado um protótipo, que mostrou ter um tempo de chaveamento inferior a dois nanossegundos, sendo compatível com as operações de chaveamento de pacotes ópticos. / The Optical Packet Switching (OPS) technology usually involves complex and expensive components relegating its application viability to the future. Nevertheless the OPS utilization is a good option for improving the granularity at high bit rate transmissions, as well as for operation involving flexibility and fast bandwidth distribution. This thesis proposes simplifications on optical switching devices that besides getting closer future viability enable the deployment of highly scalable and self-organized complex network architecture. The proposed network operates without resources reservation or previous path establishment. The routes are defined packet-by-packet in a real time deflection routing procedure. With simple local functions the network starts to operate with desirable performance characteristics such as high scalability and automatic protection system. Those desirable performance characteristics are treated as Emerging Functions. For the network characterization it is presented a statistical analytical model validated by simulation. In the automatic protection functions investigation the results for a 256 nodes network showed that the mean number of hops enhancement occurs only around the failure neighborhood. To demonstrate the switch viability, a prototype was fabricated utilizing components already available in the market. The switching time obtained was below two nanoseconds showing compatibility with the optical packet switching technology.
177

A unified theory of flow control and routing in data communication networks

Golestaani, Seyyed Jamaaloddin January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Seyyed Jamaaloddin Golestaani. / Ph.D.
178

Parallel And Pipelined Architectures For High Speed Ip Packet Forwarding

Erdem, Oguzhan 01 August 2011 (has links) (PDF)
A substantial increase in the number of internet users and the traffic volume bring new challenges for network router design. The current routers need to support higher link data rates and large number of line cards to accommodate the growth of the internet traffic, which necessitate an increase in physical space, power and memory use. Packet forwarding, which is one of the major tasks of a router, has been a performance bottleneck in internet infrastructure. In general, most of the packet forwarding algorithms are implemented in software. However, hardware based solutions has also been popular in recent years because of their high throughput performance. Besides throughput, memory efficiency, incremental/dynamic updates and power consumption are the basic performance challenges for packet forwarding architectures. Hardware-based packet forwarding engines for network routers can be categorized into two groups that are ternary content addressable memory (TCAM) based and dynamic/static random access memory (DRAM/SRAM) based solutions. TCAM-based architectures are simple and hence popular solutions for today&rsquo / s routers. However, they are expensive, power-hungry, and oer little adaptability to new addressing and routing protocols. On the other hand, SRAM has higher density, lower power consumption, and higher speed. The common data structure used in SRAM-based solutions for performing longest prefix matching (LPM) is some type of a tree. In these solutions, multiple memory accesses are required to find the longest matched prefix. Therefore, parallel and pipelining techniques are used to improve the throughput. This thesis studies TCAM and SRAM based parallel and pipelined architectures for high performance packet forwarding. We proposed to use a memory efficient disjoint prefix set algorithm on TCAM based parallel IP packet forwarding engine to improve its performance. As a fundamental contribution of this thesis, we designed an SRAM based parallel, intersecting and variable length multi-pipeline array structure (SAFIL) for trie-based internet protocol (IP) lookup. We also proposed a novel dual port SRAM based high throughput IP lookup engine (SAFILD) which is built upon SAFIL. As an alternative to traditional binary trie, we proposed a memory efficient data structure called compact clustered trie (CCT) for IP lookup. Furthermore, we developed a novel combined length-infix pipelined search (CLIPS) architecture for high performance IPv4/v6 lookup on FPGA. Finally, we designed a memory efficient clustered hierarchical search structure (CHSS) for packet classification. A linear pipelined SRAM-based architecture for CHSS which is implemented on FPGA is also proposed.
179

A fuzzy logic approach for call admission control in cellular networks.

Tokpo Ovengalt, Christophe Boris. January 2014 (has links)
M. Tech. Electrical Engineering. / Discusses Call Admission Control (CAC) is a standard operating procedure responsible for accepting or rejecting calls based on the availability of network resources. It is also used to guarantee good Quality of Service (QoS) to ongoing users. However, there are a number of imprecisions to consider during the admission and handoff processes. These uncertainties arise from the mobility of subscribers and the time-varying nature of key admission factors such as latency and packet loss.These parameters are often imprecisely measured, which has a negative impact on the estimation of a channel spectral efficiency. In mobile networking, greater emphasis is towards delivering good QoS to real-time (RT) applications. It has become increasingly necessary to develop a model capable of handling uncertainties associated with the network in order to improve the quality of decisions relating to CAC. Type-1 and Type-2 Fuzzy Logic Controllers (FLCs) were deployed to allow the CAC to make better decisions in the presence of numerous uncertainties. The model successfully proposed associated meanings and degrees of certainty to the measured values of loss and latency by means of fuzzy sets and Membership Functions (MFs). The results obtained show that the fuzzy-based CAC performs better by reducing the call blocking and call dropping probabilities which are some of the key measurement parameters of QoS in wireless networking.
180

Micro-Network Processor : A Processor Architecture for Implementing NoC Routers

Martin Rovira, Julia, Manuel Fructoso Melero, Francisco January 2007 (has links)
Routers are probably the most important component of a NoC, as the performance of the whole network is driven by the routers’ performance. Cost for the whole network in terms of area will also be minimised if the router design is kept small. A new application specific processor architecture for implementing NoC routers is proposed in this master thesis, which will be called µNP (Micro-Network Processor). The aim is to offer a solution in which there is a trade-off between the high performance of routers implemented in hardware and the high level of flexibility that could be achieved by loading a software that routed packets into a GPP. Therefore, a study including the design of a hardware based router and a GPP based router has been conducted. In this project the first version of the µNP has been designed and a complete instruction set, along with some sample programs, is also proposed. The results show that, in the best case for all implementation options, µNP was 7.5 times slower than the hardware based router. It has also behaved more than 100 times faster than the GPP based router, keeping almost the same degree of flexibility for routing purposes within NoC.

Page generated in 0.0471 seconds