• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 307
  • 90
  • 64
  • 41
  • 20
  • 15
  • 12
  • 9
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 678
  • 93
  • 79
  • 48
  • 45
  • 44
  • 44
  • 41
  • 40
  • 38
  • 37
  • 37
  • 36
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

HDL IMPLEMENTATION AND ANALYSIS OF A RESIDUAL REGISTER FOR A FLOATING-POINT ARITHMETIC UNIT

Kaveti, Akil 01 January 2008 (has links)
Processors used in lower-end scientific applications like graphic cards and video game consoles have IEEE single precision floating-point hardware [23]. Double precision offers higher precision at higher implementation cost and lower performance. The need for high precision computations in these applications is not enough to justify the use double precision hardware and the extra hardware complexity needed [23]. Native-pair arithmetic offers an interesting and feasible solution to this problem. This technique invented by T. J. Dekker uses single-length floating-point numbers to represent higher precision floating-point numbers [3]. Native-pair arithmetic has been proposed by Dr. William R. Dieter and Dr. Henry G. Dietz to achieve better accuracy using standard IEEE single precision floating point hardware [1]. Native-pair arithmetic results in better accuracy however it decreases the performance by 11x and 17x for addition and multiplication respectively [2]. The proposed implementation uses a residual register to store the error residual term [2]. This addition is not only cost efficient but also results in acceptable accuracy with 10 times the performance of 64-bit hardware. This thesis demonstrates the implementation of a 32-bit floating-point unit with residual register and estimates the hardware cost and performance.
122

The Role of Tetrahedral Building Blocks in Low-Dimensional Oxohalide Materials

Zimmermann, Iwan January 2014 (has links)
The structural architecture found in low-dimensional materials can lead to a number of interesting physical properties including anisotropic conductivity, magnetic frustration and non-linear optical properties. There is no standard synthesis concept described thus far to apply when searching for new low-dimensional compounds, and therefore control on the design of the new materials is of great importance.This thesis describes the synthesis, crystal structure and characterization of some new transition metal oxohalide compounds containing p-elements having a stereochemically active lone-pair. First row transition metal cations have been used in combination with SeIV, SbIII and TeIV ions as lone-pair elements and Cl- and Br- as halide ions. The lone-pairs do not participate in covalent bonding and are responsible for an asymmetric one-sided coordination. Lone-pair elements in combination with halide ions have shown to be powerful structural spacers that can confine transition metal building blocks into low-dimensional arrangements. The halide ions and lone-pairs reside in non-bonded crystal volumes where they interact through weak van der Waals forces. The transition metal atoms are most often arranged to form sheets, chains or small clusters; most commonly layered compounds are formed.To further explore the chemical system and to separate the transition metal entities even more the possibility to include tetrahedral building blocks such as phosphate-, silicate-, sulphate- and vanadate building blocks into this class of compounds has been investigated. Tetrahedral building blocks are well known for their ability of segmenting structural arrangements by corner sharing, which often leads to the formation of open framework structures. The inclusion of tetrahedral building blocks led to the discovery of interesting structural features such as complex hydrogen bonding, formation of unusual solid solutions or faulted stacking of layers.Compounds for which phase pure material could be synthesized have been characterized in terms of their magnetic properties. Most compounds were found to have antiferromagnetic spin interactions and indications of magnetic frustration could be observed in some of them. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 6: Manuscript. Paper 9: Manuscript. Paper 10: Manuscript.</p>
123

Secondary school girls' experiences of pair-programming in information technology / Janet Adri Liebenberg

Liebenberg, Janet Adri January 2010 (has links)
Thesis (M.Ed.)--North-West University, Potchefstroom Campus, 2010.
124

Secondary school girls' experiences of pair-programming in information technology / Janet Adri Liebenberg

Liebenberg, Janet Adri January 2010 (has links)
Thesis (M.Ed.)--North-West University, Potchefstroom Campus, 2010.
125

Quasiparticle dynamics in a single cooper-pair transistor.

Court, Nadia A., Physics, Faculty of Science, UNSW January 2008 (has links)
This thesis investigates the use of single Cooper-pair transistor (SCPT) for fast and sensitive detection of quasiparticle dynamics. This investigation is motivated by the possibility of quantum information processing using superconducting nanoscale circuits, such as the SCPT and the Cooper-pair-box (CPB). In the SCPT coherent charge transport can be temporarily halted due to quasiparticle tunnelling, known as quasiparticle poisoning. Quasiparticle poisoning can be reduced by the use of engineered island and lead gap energies. The thesis begins by reporting measurements of the superconducting gap in aluminium - aluminium-oxide - aluminium tunnel junctions, as a function of film thickness. We have observed an increase in the superconducting energy gap of aluminium with decreasing film thickness. This method is used to engineer the island and gap energies in a SCPT and consequently we observe reduced poisoning and a modification of the thresholds for finite bias transport processes. Radio-frequency reflectometry is used to perform high-bandwidth measurements of quasiparticle tunnelling in a gap engineered SCPT. A model for the radio-frequency (rf) operation of the SCPT is presented and shows close agreement with experiment. Thermal activation of the quasiparticle dynamics is investigated, and consequently, we are able to determine energetics of the poisoning and unpoisoning processes. This enables an effective quasiparticle temperature to be determined, allowing the poisoning to be parametrised. An investigation of the use of normal metal quasiparticle traps for suppression of quasiparticle poisoning in SCPT devices is performed. To date, there has been little quantitative information about the behaviour of quasiparticle traps even though they have been used extensively. The work presented serves to clarify the nature of quasiparticle trap performance. Finally the single-quasiparticle sensitivity of the SCPT is employed to directly probe a few quasiparticle gas in a small superconducting volume. The quasiparticle population is monitored both in the steady-state and under non-equilibrium conditions of injection. In the non-equilibrium regime the quasiparticle recombination time is accessed from the response of the SCPT to pulsed injection. Agreement to previous experimental studies of recombination times in aluminium is found.
126

Au-pair, von der Kulturträgerin zum Dienstmädchen : die moderne Kleinfamilie als Bildungsbörse und Arbeitsplatz /

Orthofer, Maria, January 1900 (has links)
Thesis (doctoral)--Universität Wien, 2007. / Includes bibliographical references (p. [337]-346).
127

Sobre interações escalares e vetoriais na teoria de Duffin-Kemmer-Petiau /

Cardoso, Tatiana Ramos. January 2011 (has links)
Orientador: Antonio Soares de Castro / Banca: Julio Marny Hoff da Silva / Banca: Bruto Max Pimentel Escobar / Resumo: O formalismo de primeira ordem de Du n-Kemmer-Petiau (DKP) descreve partículas de spin 0 e spin 1 e tem sido utilizado na análise de interações relativísticas de hádrons com núcleos como uma alternativa para análise baseada nos formalismos de segunda ordem convencionais de Klein-Gordon e Proca. Apresentamos a equação geral de DKP, discutimos as condições sobre as interações que levam a uma corrente conservada e os efeitos das transformações de paridade, conjugação de carga e reversão temporal. Adotando uma representação especí ca para as matrizes de DKP, estabelecemos as equações de movimento para os componentes do espinor de DKP na presença das interações escalares e vetoriais. Salientamos que o componente espacial do potencial vetorial não-mínimo não pode ser absorvido no espinor. Mostramos que o componente espacial do potencial vetorial não-mínimo poderia ser irrelevante para a formação de estados ligados para potenciais que se anulam no in nito mas que a sua presença é uma condição sine qua non para o con namento. Algumas aplicações em potenciais unidimensionais são usadas para mostrar que o paradoxo de Klein nunca aparece no caso do acoplamento vetorial não-mínimo, contrário ao que ocorre para um potencial vetorial minimamente acoplado. Um aparente paradoxo relacionado à localização de bósons na presença de potenciais fortes é resolvido através da introdução dos conceitos de massa efetiva e comprimento de onda Compton efetivo / Abstract: The rst-order Du n-Kemmer-Petiau (DKP) formalism describes spin-0 and spin-1 particles and has been used to analyze relativistic interactions of hadrons with nuclei as an alternative to their conventional second-order Klein-Gordon and Proca counterparts. We present the general DKP equation, discuss conditions on the interactions which lead to a conserved current and e ects of parity, charge-conjugation and time-reversal transformations. Adopting a speci c representation for the DKP matrices, we set up the equations for the components of the DKP spinor in the presence of scalar and vector interactions. We point out that the space component of the nonminimal vector potential can not be absorbed into the spinor. We show that the space component of the nonminimal vector potential could be irrelevant for the formation of bound states for potentials vanishing at in nity but its presence is a sine qua non condition for con nement. Some aplications in unidimensional potentials are used to show that Klein's paradox never appears in the case of a nonminimal vector potential, contrary to what occurs for a minimally coupled vector potential. An apparent paradox related to the localization of bosons in the presence of strong potentials is solved by introducing the concepts of e ective mass and e ective Compton wavelength / Mestre
128

Characterization and Modification of Fiber-based Photon Pair Sources

Erskine, Jennifer 14 November 2018 (has links)
Non-classical light sources are a fundamental building block of quantum photonic technologies. As these photonic technologies require higher numbers of sources and more specific source properties, it becomes increasingly important to characterize and manipulate these sources effectively. This thesis consists of three main projects, all relating to non-classical sources of light. First, we present a method for the rapid measurement of the joint spectral intensity of fiber-based photon pair sources. This method extends the concept of Stimulated Emission Tomography, using a chirped, broadband seed beam to stimulate the four wave mixing interaction. The use of the broadband seed, generated through supercontinuum generation, allows for measurements on the few second timescale and requires only a single pump laser to achieve high resolution joint spectra. In the second project, we use this characterization tool to test a variety of different fiber-based photon pair sources. We use three different modification approaches (bending, squeezing, and tapering) to induce changes in the joint spectral properties of the photon pair sources. We show that each of these modifications has some impact on the joint spectra measured. The resulting joint spectra are very complex, highlighting the importance of performing measurements rather than relying on calculations alone. Lastly, we demonstrate a fast switch for the manipulation of single photons. The switch uses the optical Kerr effect to rotate the polarization state of single photons at ultrafast timescales. The implementation of this switch is experimentally straightforward, using a commercial, single mode fiber as the Kerr medium and nJ level pump powers. We operate at an 80 MHz repetition rate and measure 97% switching efficiency, picosecond level switching speed, and approximately 800:1 signal to noise ratio from the operation.
129

Facial Behavior and Pair Bonds in Hylobatids

Florkiewicz, Brittany Nicole 01 May 2016 (has links)
Among primates, humans have the largest and most complex facial repertoires, followed not by their closest living hominid relatives but by hylobatids. Facial behavior is an important component of primate communication that transfers and modulates intentions and motivations. However, why great variation in primate facial expressions evolved and why hylobatid facial repertoires seem to be more similar to humans than other apes is unclear. The current study compared 206 hours of video and 103 hours of focal animal data of facial expression repertoires, measures of pair bond strength, and behavioral synchrony of ten hylobatid pairs from three genera (Nomascus, Hoolock, and Hylobates) living at the Gibbon Conservation Center, Santa Clarita, CA. This study explored whether facial repertoire breath or frequency were linked to social parameters of pair-bonds, how facial expressions related to behavioral synchrony, and if facial feedback (i.e., the transfer of behaviors and intentions by mimicking observed facial expressions) were important between pair-partners. Intra-pair facial repertoires correlated strongly with repertoire composition and rate of use, suggesting that facial feedback was important, while behavioral synchrony showed no correlation with facial behavior. The results of this study suggest that larger facial repertoires contribute to strengthening pair bonds, because richer facial repertoires provide more opportunities for facial feedback which effectively creates a better ‘understanding’ between partners through smoother and better coordinated interaction patterns.
130

Evaluation of the Effects of Pair Programming on Performance and Social Practices in Distributed Software Development / Evaluation of the Effects of Pair Programming on Performance and Social Practices in Distributed Software Development

Haider, Muhammad Tauqeer, Ali, Imran January 2011 (has links)
Context. Agile methods address the challenges of an unpredictable world by relying on “people and their creativity rather than on processes”, accelerate delivery of software and considered as a reaction to plan-based or traditional methods. Distributed software development helps to access a pool of skilled personnel, completion of tasks around the clock and more. Incorporating of agile methods in distributed software development could help to solve some problems of distributed software development such as lack of communication and its dependencies, close collaboration and so on. Objectives. In this study we investigate the proposed benefits of pair programming, an XP development technique used by agile, and its effects on performance and social practices in distributed software development. Methods. Systematic literature review and an experiment are utilized to fulfill the objectives of this study. In the systematic review a sub-set of the research articles are selected relevant to the subject of this study from the electronic sources including, ACM Digital Library, IEEE, Xplore, EiVillage (Compendx, Inspec), Science Direct and ISI Web of Science. Experiment is conducted to investigate the pair programming effects on performance and social practices. Results. Many proposed benefits of pair programming in existing literature are identified and reported in both collocated and distributed settings. Pair programming is reported as an effective software development technique as well as a pedagogical tool. Experimental results showed that pair programming also effects performance in distributed software development, and positively impacts the social practices (human or social factors). Conclusions. There are many benefits of pair programming reported in collocated settings and less in distributed software development. Pair programming impacts the performance and social practices positively. However, we also conclude that the effective use of pair programming in distributed software development will yield the concrete results as well as the programmers’ pairs should be trained, experienced and well motivated for an effective use of pair programming and to overcome the challenges of distributed software development.

Page generated in 0.0307 seconds