• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Induced-Paired Domination in Graphs

Studer, Daniel S., Haynes, Teresa W., Lawson, Linda M. 01 October 2000 (has links)
For a graph G = (V, E), a set S ⊆ V is a dominating set if every vertex in V - S is adjacent to at least one vertex in S. A dominating set S ⊆ V is a paired-dominating set if the induced subgraph 〈S〉 has a perfect matching. We introduce a variant of paired-domination where an additional restriction is placed on the induced subgraph 〈S〉. A paired-dominating set S is an induced-paired dominating set if the edges of the matching are the induced edges of 〈S〉, that is, 〈S〉 is a set of independent edges. The minimum cardinality of an induced-paired dominating set of G is the induced-paired domination number γip(G). Every graph without isolates has a paired-dominating set, but not all these graphs have an induced-paired dominating set. We show that the decision problem associated with induced-paired domination is NP-complete even when restricted to bipartite graphs and give bounds on γip(G). A characterization of those triples (a, b, c) of positive integers a ≤ b ≤ c for which a graph has domination number a, paired-domination number b, and induced-paired domination c is given. In addition, we characterize the cycles and trees that have induced-paired dominating sets.
2

Paired-Domination Game Played in Graphs<sup>∗</sup>

Haynes, Teresa W., Henning, Michael A. 01 June 2019 (has links)
In this paper, we continue the study of the domination game in graphs introduced by Brešar, Klavžar, and Rall [SIAM J. Discrete Math. 24 (2010) 979-991]. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph G by two players, named Dominator and Pairer. They alternately take turns choosing vertices of G such that each vertex chosen by Dominator dominates at least one vertex not dominated by the vertices previously chosen, while each vertex chosen by Pairer is a vertex not previously chosen that is a neighbor of the vertex played by Dominator on his previous move. This process eventually produces a paired-dominating set of vertices of G; that is, a dominating set in G that induces a subgraph that contains a perfect matching. Dominator wishes to minimize the number of vertices chosen, while Pairer wishes to maximize it. The game paired-domination number γgpr(G) of G is the number of vertices chosen when Dominator starts the game and both players play optimally. Let G be a graph on n vertices with minimum degree at least 2. We show that γgpr(G) ≤ 45 n, and this bound is tight. Further we show that if G is (C4, C5)-free, then γgpr(G) ≤ 43 n, where a graph is (C4, C5)-free if it has no induced 4-cycle or 5-cycle. If G is 2-connected and bipartite or if G is 2-connected and the sum of every two adjacent vertices in G is at least 5, then we show that γgpr(G) ≤ 34 n.
3

Domination in Digraphs

Haynes, Teresa W., Hedetniemi, Stephen T., Henning, Michael A. 01 January 2021 (has links)
Given a digraph D = (V, A), with vertex set V and arc set A, a set S ⊆ V is a dominating set if for every vertex v in V \ S, there are a vertex u in S and an arc (u, v) from u to v. In this chapter we consider the counterparts in directed graphs of independent, dominating, independent dominating, and total dominating sets in undirected graphs.
4

Paired Domination in Graphs

Desormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 January 2020 (has links)
A set S of vertices in a graph G is a paired dominating set if every vertex of G is adjacent to a vertex in S and the subgraph induced by S contains a perfect matching (not necessarily as an induced subgraph). The minimum cardinality of a paired dominating set of G is the paired domination number of G. This chapter presents a survey of the major results on paired domination with an emphasis on bounds for the paired domination number.

Page generated in 0.0952 seconds