• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of variability in sub-Arctic sea ice conditions during the Younger Dryas and Holocene

Cabedo Sanz, Patricia January 2013 (has links)
The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales. The current study describes a number of analytical and palaeoceanographic developments of the IP25 sea ice biomarker. First, IP25 was extracted and purified from Arctic marine sediments. This enabled the structure of IP25 to be confirmed and enabled instrumental (GC-MS) calibrations to be carried out so that quantitative measurements could be performed with greater accuracy. Second, palaeo sea ice reconstructions based on IP25 and other biomarkers were carried out for a suite of sub-Arctic areas within the Greenland, Norwegian and Barents Seas, each of which represent contrasting oceanographic and environmental settings. Further, an evaluation of some combined biomarker approaches (e.g. the PIP25 and DIP25 indices) for quantifying and/or refining definitions of sea ice conditions was carried out. Temporally, particular emphasis was placed on the characterisation of sea ice conditions during the Younger Dryas and the Holocene. Some comparisons with other proxies (e.g. foraminifera, IRD) were also made. A study of a sediment core from Andfjorden (69.16˚N, 16.25˚E), northern Norway, provided unequivocal evidence for the occurrence of seasonal sea ice conditions during the Younger Dryas. The onset (ca. 12.9 cal. kyr BP) and end (ca. 11.5 cal. kyr BP) of this stadial were especially clear in this location, while in a study from the Kveithola Trough (74.52˚N, 16.29˚E), western Barents Sea, these transitions were less apparent. This was attributed to the presence of colder surface waters and the occurrence of seasonal sea ice both before and after this stadial at higher latitudes. Some regional differences regarding the severity of the sea ice conditions were also observed, although an overall general picture was proposed, with more severe sea ice conditions during the early-mid Younger Dryas and less sea ice observed during the late Younger Dryas. A shift in the climate towards ice-free conditions was recorded in northern Norway during the early Holocene (ca. 11.5 – 7.2 cal. kyr BP). Milder conditions were also observed during the Holocene in the western Barents Sea, with three main climate periods observed. During the early Holocene (ca. 11.7 – 9.5 cal. kyr BP), the position of the spring ice edge was close to the study area which resulted in high productivity during summers. During the mid-late Holocene (ca. 9.5 – 1.6 cal. kyr BP), sea ice was mainly absent due to an increased influence of Atlantic waters and northward movement of the Polar Front. During the last ca. 1.6 cal. kyr BP, sea ice conditions were similar to those of the present day. In addition to the outcomes obtained from the Norwegian-Barents Sea region, comparison of biomarker and other proxy data from 3 short cores from Kangerdlugssuaq Trough (Denmark Strait/SE Greenland) with historical climate observations allowed the development of a model of sea ice conditions which was then tested for longer time-scales. It is suggested that the IP25 in sediments from this region is likely derived from drift ice carried from the Arctic Ocean via the East Greenland Current and that two main sea surface scenarios have existed over the last ca. 150 yr. From ca. AD 1850 – 1910, near perennial sea ice conditions resulted in very low primary productivity, while from ca. AD 1910 – 1986, local sea ice conditions were less severe with increased drift ice and enhanced primary productivity. This two-component model was subsequently developed to accommodate different sea surface conditions that existed during the retreat of the Greenland Ice Sheet during the deglaciation (ca. 16.3 – 10.9 cal. kyr BP).
2

Evidence for birch forests and a highly productive environment near the margin of the Fennoscandian ice sheet in the Värriötunturit area, northeastern Finland

Bogren, Fredrik January 2019 (has links)
High-resolution records of early Holocene deposits are rare, and as a consequence reconstruction of terrestrial environments very soon after the deglaciation has often been difficult. In this study the palaeoenvironmental conditions of early Holocene (c. 10600-7500 cal. yr BP) are reconstructed in the Värriötunturit area of northeastern Finland, using evidence from plant macrofossils and pollen preserved in a lake sediment sequence retrieved from the small lake Kuutsjärvi. Special emphasis is put on the environment immediately following the deglaciation as the base of the sediment sequence is rich in minerogenic material interpreted to have been deposited by meltwater pulses from the retreating ice sheet. The abundance and variety of fossil remains in these early meltwater deposits provide evidence for a very productive ice-marginal environment in the area between the lake and the ice sheet, and the presence of tree-type Betula macro remains as well as high percentage values of tree-type Betula pollen suggests that a subarctic birch forest established just a few years after the deglaciation. In the following centuries the birch forest around the lake became rich in an under growth of ferns, and at c. 9400 cal. yr BP a transition into a mixed pine and birch forest took place. Due to absence of indicator plant taxa in the sediment it was not possible to reconstruct temperature conditions for any parts of the sequence in this study. However, the rapid colonisation of birch forests suggests that the climate was warm already during deglaciation, which is also in accordance with climatic conditions reconstructed for the early Holocene in the nearby Sokli area just 10 km away, as well as in other parts of Fennoscandia and Russia.

Page generated in 0.1055 seconds