• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 621
  • 174
  • 110
  • 70
  • 40
  • 34
  • 23
  • 18
  • 9
  • 9
  • 8
  • 8
  • 5
  • 5
  • 5
  • Tagged with
  • 1373
  • 283
  • 268
  • 156
  • 148
  • 129
  • 129
  • 124
  • 117
  • 107
  • 105
  • 102
  • 96
  • 88
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Nouveaux ligands de type N,O et P,N et leurs applications en chimie de coordination et catalyse homogène

Agostinho, Magno Braunstein, Pierre. January 2007 (has links) (PDF)
Thèse de doctorat : Chimie : Strasbourg 1 : 2006. / Texte en français et en anglais. Titre provenant de l'écran-titre. Notes bibliogr.
472

Kinetics of the hydrodechlorination reaction of chlorinated compounds on palladium catalysts

Chen, Nan. January 2003 (has links)
Thesis (Ph. D.)--Worcester Polytechnic Institute. / Keywords: hydrodechlorination; reaction kinetics; reaction steps; chlorinated compounds; Palladium catalysts. Includes bibliographical references.
473

Domino Reactions for the Syntheses of Chiral Chromanes ‒ Enantioselective Total Syntheses of (‒)-Diversonol, (‒)-Blennolide C, (‒)-Gonytolide C and Formal Synthesis of Siccanin

Jackenkroll, Stefan 28 July 2014 (has links)
No description available.
474

Effects of Solvent Composition and Hydrogen Pressure on the Catalytic Conversion of 1,2,4,5-Tetrachlorobenzene to Cyclohexane

Cone, Margaret Elizabeth 01 January 2013 (has links)
Halogenated hydrophobic organic compounds (HHOCs) such as 1,2,4,5-tetrachlorobenzene (TeCB) present a threat to both human health and the environment. The common occurrence and recalcitrant nature of HHOCs as soil contaminants necessitate an effective soil remediation method. Wee and Cunningham (2008, 2011, 2013) proposed a clean-up technology called Remedial Extraction and Catalytic Hydrodehalogenation (REACH), which pairs solvent extraction of HHOC contaminants from soil with catalytic hydrodehalogenation to destroy contaminants. Wee and Cunningham (2008, 2011, 2013) utilized a palladium (Pd) catalyst to hydrodehalogenate TeCB to benzene. However, benzene is still a toxic contaminant. Prior research has demonstrated that Pd-catalyzed hydrodehalogenation (HDH) can be paired with Rh-catalyzed hydrogenation to transform TeCB to cyclohexane, which is a less toxic end product (Osborn 2011; Ticknor 2012). However, there remains a need to quantify the effects of different operating conditions on the catalytic reaction rates upon which the technology relies. It was hypothesized that (1) an increased ratio of water to ethanol in water/ethanol solvents would increase the reaction rates of both Pd-catalyzed HDH and Rh-catalyzed hydrogenation, and (2) catalytic reaction rates would be constant above a hydrogen pressure threshold, but would decrease with decreasing hydrogen pressure beneath the threshold. Thus, the objective of this thesis was to contribute to the development of optimal operating parameters for the REACH technology by quantifying the effects of solvent composition and hydrogen pressure on the catalytic conversion of TeCB to cyclohexane in water/ethanol solvents in a batch reactor. Complete conversion of TeCB to cyclohexane was achieved at all experimental conditions tested. The data were consistent with an apparent first-order kinetics model where Pd-catalyzed HDH and Rh-catalyzed hydrogenation occur in series. The effects of three water/ethanol solvent compositions (33:67, 50:50, 67:33) were investigated at 50 psi hydrogen pressure. HDH rate coefficients increased monotonically with an increasing fraction of water in the solvent. When the water fraction in the solvent was increased from 50% to 67%, a larger HDH rate coefficient increase was observed than when the water fraction was increased from 33% to 50%. In both cases, the observed increases were statistically significant at a 95% confidence level. For hydrogenation, rate coefficients at 33% and 50% water were approximately equal. The hydrogenation rate coefficient at 67% water was much greater than the rate coefficients at 50% and 33% water, but the increase was not statistically significant at a 95% confidence level. The observed time for complete conversion of TeCB to cyclohexane decreased with an increasing fraction of water in the solvent, from 12-18 hours with a 33% water solvent to 8-12 hours with a 50% water solvent, and to 1-1.5 hours with a 67% water solvent. The effects of three hydrogen pressures (50 psi, 30 psi, 10 psi) were investigated with a 50:50 water/ethanol solvent. HDH rate coefficients increased monotonically with decreasing hydrogen pressure, though the trend was not statistically significant at a 95% confidence level until the pressure was decreased from 30 psi to 10 psi. This trend can be attributed to the displacement of TeCB by hydrogen on the catalyst surface at higher hydrogen pressures. For hydrogenation, the data suggest that rate coefficients are independent of hydrogen pressure in the pressure range of 10-50 psi, since no statistically significant hydrogen pressure effect was observed. Complete conversion of TeCB to cyclohexane was achieved at hydrogen pressures as low as 5 psi. These findings suggest that a greater fraction of water in the solvent should be utilized in the REACH system when feasible to maximize catalytic reaction rates. These findings also suggest that the REACH system could be operated at hydrogen pressures as low as 5 psi, which would further improve the safety of the technology.
475

First-principles investigation of the surface reactivity of Pd-based alloys for fuel cell catalyst applications

Ham, Hyung Chul 02 April 2012 (has links)
In recent years, palladium (Pd) has been extensively studied for a possible alternative for Pt that has been most commonly used as a catalyst in fuel cells. However, Pd shows lower activity than Pt towards the cathodic oxygen reduction reaction (ORR) and also exhibits poor tolerance toward carbon monoxide (CO) poisoning occurring in the anode process. To improve its performance, alloying Pd with other transition metals has been suggested as one of promising solutions as the Pd-based alloys have been found to boost the ORR activity and yield significant improvement in the CO tolerance. However, a detailed understanding of the alloying effects is still lacking, despite its importance in designing and developing new and more cost effective fuel cell catalysts. This is in large part due to the difficulty of direct characterization. Alternatively, computational approaches based on quantum mechanics have emerged as a powerful and flexible means to unravel the complex alloying effects in multimetallic catalysts; such first principles-based computational studies have provided many invaluable insights into the mechanisms of catalytic reactions occurring on the alloy surfaces. Using first-principles density-functional theory calculations, we have examined the surface reactivity of Pd-based bimetallic catalysts with the aim of better understanding the alloying effects in association with atomic arrangement, facet, local strain, ligand interaction, and effective atomic coordination number at the surface. More specifically, this thesis work has focused on examining the following topics: Role of Pd ensembles in selective H₂O₂ formation on AuPd alloys; Effect of local strain and low-coordination number at the surface on the performance of Pd monomer in selective H₂O₂ formation; Different facet effects on the activity of Pd ensembles towards ORR; Structure of ternary Pd-Ir-Co alloys and its reactivity towards ORR; Pd ensembles effects on CO oxidation on CO-precovered Pd ensembles; Role of ligand and ensembles in determining CO chemisorptions on AuPd and AuPt. Our first principles-based theoretical investigation of bimetallic alloys offers some insights into the rational design and development of alloyed catalysts. / text
476

Cathode catalysts for low-temperature fuel cells : analysis of surface phenomena

Mathew, Preethi 17 February 2014 (has links)
The electrochemical oxygen reduction reaction (ORR) steps on a noble metal catalyst in an acidic aqueous electrolyte depend on the nature of the catalytic surface with which the O₂ molecule interacts. It has been assumed that the O₂ molecules interact directly with a bare noble-metal surface. By studying the nature of chemisorbed species on the surface of a metal catalyst as a function of the voltage on the anodic and cathodic sweeps, it is shown here that the O₂ reacts with a surface covered with oxide species extracted from the aqueous electrolyte and not from the O₂ molecules; the ORR is more active when the surface species are OH rather than O. Moreover, the strength of the chemical bond of the adsorbed species was shown to depend on the relative strengths of the metal-metal versus metal-oxide bonds. The Pt-Pt bonds are stronger than the Pd-Pd bonds, and the relative Pd-O bonds are stronger than the relative Pt-O bonds. As a result, the chemisorbed O species is stable to lower anodic potentials on Pd. CO oxidation to CO₂ occurs at a higher potential on Pd than on Pt, which is why Pd (not Pt) is tolerant to methanol. Experiments with alloys show the following: (1) methanol tolerance decreases with the increase of Pt in the Pd-Pt alloys with Pd₃Pt/C showing an initial tolerance that decreases with cycling; (2) OH is formed on Pt₃Co/C and core-shell Pt-Cu/C, which results in a higher activity and durability for the ORR on these catalysts; (3) a 300°C anneal is needed to stabilize the Pd₃Au/C catalyst that forms an O adsorbate; and (4) OH is formed on Pd₃Co/C and Pd₃CoNi/C. These studies provide a perspective on possible pathways of the ORR on oxide-coated noble-metal alloy catalysts. / text
477

Direct comparison of homogeneous and heterogeneous palladium(II) catalysts for Suzuki-Miyaura cross-coupling reactions

Crawford, Katherine Alexis 30 March 2015 (has links)
The syntheses and catalytic properties of four new 1,2-acenaphthenyl N-heterocyclic carbene-supported palladium(II) catalysts are presented. The acenaphthenyl carbene can be prepared using either mesityl or 2,6-diisopropyl N-aryl substituents. In addition, two new heterogeneous analogs were synthesized with 2,6-diisopropyl N-aryl substituents that were anchored through the backbone to an insoluble silica-support. Comprehensive catalytic studies of the Suzuki coupling of aryl halides with aryl boronic acids were carried out. In general, the homogeneous diisopropyl-functionalized catalyst was found to exhibit superior selectivity and reactivity. A comparison of the performances of the aforementioned catalysts in toluene, dichloromethane and aqueous solutions are also presented. In organic solvents, the catalysts were found to be proficient for the homogeneous Suzuki coupling of aryl iodides, bromides and chlorides with boronic acids at low temperatures (35‒40 °C). Similar reactions that were carried out in aqueous media resulted in the formation of insoluble colloidal catalytic species. Nevertheless, these species still retained high activities in terms of in the Suzuki reaction with aryl chlorides. Moreover, the heterogeneous Pd precipitates can be easily recovered for subsequent use by means of filtration. The activation energies that were determined for the aryl bromide-based Suzuki reactions were found to fall in the range, 159.2‒171.2 kJ mol⁻¹ in organic solvents and 111.3‒115.9 kJ mol⁻¹ in water. The corresponding activation energy for the aryl chloride was found to be 321.8 kJ mol⁻¹ in aqueous media using the homogeneous diisopropyl-functionalized carbene catalyst. Conversely, the heterogeneous catalyst exhibited reactivity toward aryl iodides and bromides exclusively, and required significantly higher temperatures and catalyst loadings in both toluene and water. Additional experimental trials that were performed in tetrahydrofuran solution at lower temperatures resulted in substantially larger catalytic conversions. The heterogeneous catalyst allowed for easy separation and recovery. However, the catalyst exhibited a significant decrease in reactivity toward the aryl halides after two consecutive trials. / text
478

Detection of metal vapor atoms in bubbles at room temperature

Molloy, John Leo 28 August 2008 (has links)
Not available
479

MODELING OF THE BIOELECTRIC SYSTEM FORMED BY PALLADIUM AND CARBON ELECTRODES INSERTED IN COTTON (GOSSYPIUM HIRSUTUM) PLANTS.

Ledezma Razcon, Eugenio A. January 1985 (has links)
No description available.
480

Synthesis, Structure, and Reactivity of New Palladium(III) Complexes

Campbell, Michael Glenn 06 June 2014 (has links)
Palladium is one of the most common and versatile transition metals used in modern organometallic chemistry. The chemistry of palladium in its 0, +II, and +IV oxidation states is well-known; by comparison, the chemistry of palladium in its +III oxidation state is in its infancy. The work in this thesis involves the study of previously unknown Pd(III) complexes, including applications in materials chemistry and catalysis. / Chemistry and Chemical Biology

Page generated in 0.0574 seconds