• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 20
  • 17
  • 17
  • 15
  • 15
  • 15
  • 15
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Impact of Chlorine Substituents on the Regioselectivity of Pd(0)-catalyzed Direct Arylation of Heteroaromatics

Petrov, Ivan 18 February 2011 (has links)
The regioselectivity in Pd(0)-catalyzed direct arylation of pyrrole, thiophene, and indole can be improved by blocking some of the reactive sites with a chloride group, leading to increased yields of the desired regioisomers. Competition experiments and computational studies show that the blocking group also activates the substrates toward arylation. Due to the activated nature of chlorinated heteroaromatics, rare and sought after regioisomers, such as 3-arylthiophenes, can be obtained under mild conditions in good yields. Chlorine-bearing thiophenes arylated at C3 and C4 have the potential to undergo controlled regioregular polymerization under conditions developed in the field of polythiophene chemistry. Mechanistic studies support the hypothesis that the arylation of the substrates under investigation likely proceeds via the CMD transition state.
12

Reversible Oxidative Addition in Palladium Catalysis: New Methods for Carbon–Carbon and Carbon–Heteroatom Bond Formation

Newman, Stephen 18 December 2012 (has links)
The development of new, improved methods for forming carbon–carbon and carbon–heteroatom bonds is the basic goal in synthetic organic chemistry. In the Lautens group, many recent advances have been made using late transition metals such as rhodium and palladium. One such research project involves the synthesis of indoles through tandem C–N and C–C coupling reactions using gem-dibromoolefin starting materials, and this area serves as a starting point for the research described. Chapter 1 describes a method by which the tandem use of gem-dibromoolefins can be halted to give intramolecular monocoupling reactions, maintaining one of the carbon–bromine bonds which can serve as a useful handle for further functionalization. The use of copper as a catalyst is key to this reaction, as it features a unique mechanism for carbon–heteroatom bond formation. Benzofurans and benzothiophenes can be prepared by this method. Chapter 2 describes the synthesis of 2-bromoindoles using an intramolecular Buchwald–Hartwig amination of gem-dibromoolefins. It is found that the products are more reactive towards palladium(0) than the starting material, and the use of a bulky phosphine ligand which facilitates reversible oxidative addition is required. This represents one of the first catalytic applications of this step in synthesis. Chapter 3 further explores the concept of reversible oxidative addition in a novel carbohalogenation reaction of alkenes. Aryl iodides tethered to alkenes are treated with a palladium(0) catalysts, which can undergo the basic steps of oxidative addition, carbopalladation, and novel sp2 carbon–iodine reductive elimination. This process is remarkably simple in concept, and is a waste-free, atom economically method for preparing new carbon–carbon bonds. Chapter 4 discusses various limitations to the carbohalogenation methodology, and seeks to overcome these problems. The use of aryl bromide starting materials can be accomplished by adding an iodide source to the reaction, allowing halide exchange of palladium(II) intermediates to occur. Intermolecular and asymmetric variants are also explored. Computational studies are discussed which reveal useful mechanistic details of the catalytic cycle, and this information is used in the development of novel phosphine ligands.
13

The Impact of Chlorine Substituents on the Regioselectivity of Pd(0)-catalyzed Direct Arylation of Heteroaromatics

Petrov, Ivan January 2011 (has links)
The regioselectivity in Pd(0)-catalyzed direct arylation of pyrrole, thiophene, and indole can be improved by blocking some of the reactive sites with a chloride group, leading to increased yields of the desired regioisomers. Competition experiments and computational studies show that the blocking group also activates the substrates toward arylation. Due to the activated nature of chlorinated heteroaromatics, rare and sought after regioisomers, such as 3-arylthiophenes, can be obtained under mild conditions in good yields. Chlorine-bearing thiophenes arylated at C3 and C4 have the potential to undergo controlled regioregular polymerization under conditions developed in the field of polythiophene chemistry. Mechanistic studies support the hypothesis that the arylation of the substrates under investigation likely proceeds via the CMD transition state.
14

Tetra-substituted olefin synthesis using palladium-catalysed C-H activation

Lopez Suarez, Laura January 2012 (has links)
In an effort to obtain more efficient and greener chemical transformations, a substantial amount of research interest has been directed towards the use of arene C-H bonds as functional groups. Hydroarylation of alkynes through direct functionalisation of C-H bonds has been studied in recent years leading to the development of high-yielding metal-mediated processes. The main aim of the current work is the addition of a third component in the hydroarylation of alkynes trough C-H activation, in order to achieve a second C-C bond formation. Attempts at palladium-catalysed three-component reaction of unactivated indoles with alkynes and aryliodides are described. The three-component reaction was studied in the intermolecular mode with both aryliodides and the more reactive diaryliodonium salts. These latter regents are reactive arylating and oxidising agents and have been used in the direct arylation of indoles under mild conditions through a PdII-PdIV catalytic cycle. In both cases the three-component product was not obtained. The intramolecular version of the reaction using alkyne-tethered indoles and diaryliodonium salts is also described. In this case the tandem process was successful, especially when using ethynylbenzyl indole derivatives, the Z-tetrasubstituted olefins could be selectively obtained under mild conditions. Finally, a low-yielding synthesis of chromenes from propargylaryl ethers and diaryliodonium salts is also discussed.
15

From palladium to iron : towards more sustainable catalysis

Jones, Alison Sarah January 2015 (has links)
The construction of bonds in a controlled and selective manner and the development of operationally simple, general and reliable methods to achieve these aims remains a key goal of chemical synthesis and the countless industries it impacts upon. With this in mind, the chemo-, regio- and stereoselective introduction of a number of functionalities into small molecules was investigated. Traditionally the majority of functionalisations have used precious metals; the scope of transformations that can be achieved using these catalysts is remarkable. Palladium in particular has found widespread application in new bond-forming processes and, in addition to cross-coupling reactions, palladium catalysis has been used to effect a wide variety of asymmetric reactions. This work describes investigations into the palladium-catalysed enantioselective electrophilic fluorination of azaarylacetates and amides A2 and the oxidative annulation of ferrocene derivatives A4 (Scheme A1). Both products have structural significance; heterocycles and stereogenic fluorinated centres, present in A3, are important motifs in the pharmaceutical industry, and ferrocenes are important rigid scaffolds in chiral ligands such as those in the Josiphos family e.g. A7. Scheme A1. Palladium catalysis for a) enantioselective fluorination and b) oxidative annulation Whilst a general catalyst remained elusive for the asymmetric fluorination of azaarylacetates and amides, benzoxazole-containing substrates were consistently fluorinated with excellent enantioselectivity (up to 96% ee) using palladium catalyst A1 (Scheme 1a). The oxidative annulation of ferrocene derivatives proved challenging and although the reaction was successful, the product could only be isolated in up to 24% yield (Scheme 1b). In order to determine the yield-limiting step of the reaction, mechanistic studies were conducted and palladacycle A6 was synthesised as a possible reaction intermediate. Recently there has been a shift towards the development of more sustainable, environmentally benign and economic catalyst systems and iron is quickly becoming recognised as a viable alternative owing to its high natural abundance and low toxicity. A general iron-catalysed hydrofunctionalisation procedure is described that was used to form a wide variety of carbon-carbon and carbon-heteroatom bonds (Scheme A2). Scheme A2. Iron catalysis for carbon-carbon and carbon-heteroatom bond formation With just 0.5 mol% iron catalyst, the broad scope formal hydrofunctionalisation of styrene derivatives was achieved using commercially available and bench-stable catalysts and reagents. An iron-catalysed highly regioselective hydromagnesiation gave a common benzylic Grignard reagent, which was reacted with an array of electrophiles in a highly chemo- and regioselective manner. Significantly, the products of formal hydroboration, hydrosilylation and cross-coupling reactions were obtained.
16

Palladium-catalysed carbonylation of aliphatic amines and its application in the total synthesis of cylindricine C

Hogg, Kirsten Fiona January 2018 (has links)
This thesis comprises three projects on the theme of catalytic C(sp3)–H carbonylation of secondary aliphatic amines. Chapter 2 describes the development of a general methyl C–H carbonylation of secondary aliphatic amines to form synthetically useful β-lactam building blocks. Amines exhibiting a range of substitution patterns around the nitrogen functionality, and bearing a wide variety of functional groups, could be tolerated in the reaction. The desired β-lactam products were delivered in high yields, with excellent selectivity observed for the β-C–H position. Computational studies suggested that the reaction proceeds through a novel carbamoyl cyclopalladation pathway, which is distinct from classical cyclopalladation. The subsequent discovery of a selective methylene C–H carbonylation of α-tertiary amines (ATAs) is discussed in chapter 3. By employing the ATA motif, remarkable levels of selectivity for β-methlyene C–H bonds were achieved, even in the presence of traditionally more reactive methyl C–H and C(sp2)–H bonds. Once more, the reaction was found to exhibit excellent functional group tolerance, delivering highly functionalised β-lactam building blocks in high yields and selectivity. Chapter 4 presents work towards the total synthesis of the marine natural product (±)cylindricine C. The key step of this synthesis was demonstrated to proceed in good yield and excellent selectivity.
17

Part A: Palladium-Catalyzed C–H Bond Functionalization Part B: Studies Toward the Synthesis of Ginkgolide C using Gold(I) Catalysis

Lapointe, David 26 January 2012 (has links)
The field of metal-catalyzed C–H bond functionalizations is an incredibly vibrant and spans beyond the formations of biaryl motifs. The introduction chapter will cover the mechanistic aspects of the C–H bond functionalization with metal-carboxylate complexes. The mechanistic facets of this reaction will be the main conducting line between the different sections and chapters of the first part of this thesis. In the second chapter, will be described additives that can readily promoted C–H bond arylation of poorly reactive substrates. More specifically, we will revisit the intramolecular direct arylation reaction we will demonstrate the effect of pivalic acid as a co-catalyst by developing milder reaction conditions. In the third chapter we be described experimental and computational studies which suggested that the a single pathway might be involved in the palladium-catalyzed C–H bond functionalization of a wide range of (hetero)arene. Following this we will describe a general set of conditions for the direct arylation of wide range of heteroarenes. Also, we will present two different strategies to selectively and predictably arylate substrates containing multiple functionalizable C–H bonds. In the fourth chapter will be presented our efforts toward the development of new C–H bond functionalization methods in which we could apply our knowledge on the C–H bond cleavage and apply it to the formation of new scaffolds. The development of two new palladium-catalyzed methods were also described. In the fifth chapter, our effort toward the development of ligands to specifically promoted C–H bond cleavage will be presented. In the sixth chapter will be presented the latest results on the study of the mechanism of the C–H bond cleavage combining experimental and computational studies. In part B of this thesis will be presented our strategy toward the total synthesis of ginkgolide C that included two gold(I)-catalyzed reactions as key steps in the preparation of the spiro[4.4]nonane core of this natural product. The first studies on the feasibility of the key steps of the synthesis will be described.
18

Synthesis of 1,2,3-Triazole-fused Heterocycles via Palladium Catalyzed Annulation of 5-Iodotriazoles

Schulman, Jacqueline Madeleine 20 December 2011 (has links)
Increasing attention has recently been directed toward 1,2,3-triazole-containing compounds. With their unique properties and excellent stability, 1,4-disubstituted triazoles are readily accessible via the copper catalyzed azide alkyne cycloaddition (CuAAC). As compounds containing fused triazoles become common in pharmaceutical targets and biologically active substances, new strategies to synthesize this class of molecules are highly desirable. An efficient and highly modular approach toward the synthesis of three different heterocyclic motifs containing fused 1,2,3-triazoles is reported. The synthesis involved a Pd-catalyzed annulation of 5-iodo-1,2,3-triazoles, which were prepared by a Cu(I)-catalyzed cycloaddition of iodoalkynes and azides. This work demonstrates the versatility of iodotriazoles in Heck reactions and in direct arylations.
19

Synthesis of 1,2,3-Triazole-fused Heterocycles via Palladium Catalyzed Annulation of 5-Iodotriazoles

Schulman, Jacqueline Madeleine 20 December 2011 (has links)
Increasing attention has recently been directed toward 1,2,3-triazole-containing compounds. With their unique properties and excellent stability, 1,4-disubstituted triazoles are readily accessible via the copper catalyzed azide alkyne cycloaddition (CuAAC). As compounds containing fused triazoles become common in pharmaceutical targets and biologically active substances, new strategies to synthesize this class of molecules are highly desirable. An efficient and highly modular approach toward the synthesis of three different heterocyclic motifs containing fused 1,2,3-triazoles is reported. The synthesis involved a Pd-catalyzed annulation of 5-iodo-1,2,3-triazoles, which were prepared by a Cu(I)-catalyzed cycloaddition of iodoalkynes and azides. This work demonstrates the versatility of iodotriazoles in Heck reactions and in direct arylations.
20

Part A: Palladium-Catalyzed C–H Bond Functionalization Part B: Studies Toward the Synthesis of Ginkgolide C using Gold(I) Catalysis

Lapointe, David 26 January 2012 (has links)
The field of metal-catalyzed C–H bond functionalizations is an incredibly vibrant and spans beyond the formations of biaryl motifs. The introduction chapter will cover the mechanistic aspects of the C–H bond functionalization with metal-carboxylate complexes. The mechanistic facets of this reaction will be the main conducting line between the different sections and chapters of the first part of this thesis. In the second chapter, will be described additives that can readily promoted C–H bond arylation of poorly reactive substrates. More specifically, we will revisit the intramolecular direct arylation reaction we will demonstrate the effect of pivalic acid as a co-catalyst by developing milder reaction conditions. In the third chapter we be described experimental and computational studies which suggested that the a single pathway might be involved in the palladium-catalyzed C–H bond functionalization of a wide range of (hetero)arene. Following this we will describe a general set of conditions for the direct arylation of wide range of heteroarenes. Also, we will present two different strategies to selectively and predictably arylate substrates containing multiple functionalizable C–H bonds. In the fourth chapter will be presented our efforts toward the development of new C–H bond functionalization methods in which we could apply our knowledge on the C–H bond cleavage and apply it to the formation of new scaffolds. The development of two new palladium-catalyzed methods were also described. In the fifth chapter, our effort toward the development of ligands to specifically promoted C–H bond cleavage will be presented. In the sixth chapter will be presented the latest results on the study of the mechanism of the C–H bond cleavage combining experimental and computational studies. In part B of this thesis will be presented our strategy toward the total synthesis of ginkgolide C that included two gold(I)-catalyzed reactions as key steps in the preparation of the spiro[4.4]nonane core of this natural product. The first studies on the feasibility of the key steps of the synthesis will be described.

Page generated in 0.076 seconds