• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

Sarkar, Arindam 22 October 2009 (has links)
Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900 oC in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation focuses on carbon-supported binary Pt@Cu and ternary PtxPd1-x@Cu “core-shell” nanoparticles synthesized by a novel galvanic displacement of Cu by Pt4+ and Pd2+ at ambient conditions. Structural characterizations suggest that the Pt@Cu nanoparticles have a Pt-Cu alloy layer sandwiched between a copper core and a Pt shell. The electrochemical data clearly point to an enhancement in the activity for ORR for the Pt@Cu “core-shell” nanoparticle electrocatalysts compared to the commercial Pt electrocatalyst, both on per unit mass of Pt and per unit active surface area basis. The increase in activity for ORR is ascribed to electronic modification of the outer Pt shell by the Pt-Cu alloy core. However, incorporation of Pd to obtain PtxPd1-x@Cu deteriorates the activity for ORR. / text
2

Development and understanding of Pd-based nanoalloys as cathode electrocatalysts for PEMFC

Zhao, Juan, 1981- 14 December 2010 (has links)
Proton exchange membrane fuel cells (PEMFC) are attractive power sources as they offer high conversion efficiencies with low or no pollution. However, several challenges, especially the sluggish oxygen reduction reaction (ORR) and the high cost of Pt catalysts, impede their commercialization. With an aim to search for more active, less expensive, and more stable ORR catalysts than Pt, this dissertation focuses on the development of non-platinum or low-platinum Pd-based nanostructured electrocatalysts and a fundamental understanding of their structure-property-performance relationships. Carbon-supported Pd–Ni nanoalloy electrocatalysts with different Pd/Ni atomic ratios have been synthesized by a modified polyol reduction method, followed by heat treatment in a reducing atmosphere at 500–900 oC. The Pd–Ni sample with a Pd:Ni atomic ratio of 4:1 after heat treatment at 500 °C exhibits the highest electrochemical surface area and catalytic activity. The enhanced activity of Pd80Ni20 compared to that of Pd is attributed to Pd enrichment on the surface and the consequent lattice-strain effects. To improve the catalytic activity and long-term durability of the Pd–Ni catalysts, Pd–Pt–Ni nanoalloys have been synthesized by the same method and evaluated in PEMFC. The Pt-based mass activity of the Pd–Pt–Ni catalysts exceeds that of commercial Pt by a factor of 2, and its long-term durability is comparable to commercial Pt within the testing duration of 180 h. Both the favorable and detrimental effects of Pd and Ni dissolution on the performance of the membrane-electrode assembly (MEA) have been investigated by compositional analysis by transmission electron microscopy (TEM) of the MEAs before and after the fuel cell test. The MEAs of the Pd–Pt–Ni catalyst have then been characterized in-situ by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to better understand the performance changes during cell operation. The surface state change from Pd-enrichment to Pt-enrichment and the consequent decrease in the charge transfer resistance during cell operation is believed to contribute to the activity enhancement. To further improve the MEA performance and durability, the as-synthesized Pd–Pt–Ni catalysts have been pre-leached in acid and Pd–Pt alloy catalysts have been synthesized to alleviate contamination from dissolved metal ions. Compared to the pristine Pd–Pt–Ni catalyst, the preleached catalyst shows improved performance and the Pd–Pt catalyst exhibits similar performance in the entire current density range. Finally, the catalytic activities for ORR obtained from the rotating disk electrode (RDE) and PEMFC single-cell measurements of all the catalysts are compared. The improvement in the activities of the Pd-Pt-based catalysts compared to that of Pt measured by the RDE experiments is much lower than that obtained in single cell test. In other words, RDE tests underestimate the value of the Pd-Pt-based electrocatalysts for real fuel cell applications. Also, based on the RDE data, the Pd–Pt–Cu catalyst exhibits the highest catalytic activity among all the Pd–Pt–M (M = Fe, Ni, Cu) catalysts studied. / text
3

Synthesis & characterization of yttria-stabilised zirconia (YSZ) hollow fibre support for Pd based membrane

Bridget, Tshamano Matamela January 2013 (has links)
>Magister Scientiae - MSc / Inorganic based membranes which have a symmetric/asymmetric structure have been produced using an immersion induced phase inversion and sintering method. An organic binder solution (dope) containing yttria-stabilised zirconium (YSZ) particles is spun through a triple orifice spinneret to form a hollow fibre precursor, which is then sintered at elevated temperatures to form a ceramic support. The phase inversion process for the formation of hollow fibre membranes was studied in order to produce the best morphological structure/support for palladium based membranes. The spinning parameters, particle size, non-solvent concentration, internal coagulant as well as the calcination temperature were investigated in order to determine the optimum values. Sintering temperature was also investigated, which would yield a sponge-like structure with an optimized permeability, while retaining a smooth outer surface. The supports produced by phase inversion were characterized in terms of dimension by mercury porosimetry, compressed air permeability, Surface Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The morphology of the produced ceramic support showed either dense or porous characteristics governed by the dynamics of the phase inversion process. The particle size of YSZ was examined in order to decrease the amount of agglomerates in the spinning suspension. Zetasizer tests indicated that at 15 minutes, the ultrasonic bath effectively homogenised the YSZ particles and prohibited soft agglomerates from reforming in the spinning suspension. In this study, an increase in air gap had no noticeable effect on the finger like voids but it had a considerable effect on both the inner diameter (ID) and outer diameter (OD) of the green fibres, while an increase in bore liquid flow rate and extrusion pressure promoted viscous fingering and significant effect on the ID and OD of the fibres, respectively. There was a decrease in porosity and permeability with increasing sintering temperature, addition of water concentration in the spinning suspension and varying N-methylpyrrolidone (NMP) aqueous solution of the internal coagulant. The amount of YSZ added to the starting suspension influenced the properties of the support structure. Viscous deformation was observed for dope with lower particle loading thus resulted in the formation of cracks and defects during sintering.
4

HIGH-THROUGHPUT EXPERIMENTATION OF THE BUCHWALD-HARTWIG AMINATION FOR REACTION SCOUTING AND GUIDED SYNTHESIS

Damien Edward Dobson (12790118) 16 June 2022 (has links)
<p>  </p> <p>Aromatic C-N bond formation is critical for synthetic chemistry in pharmaceutical, agrochemical, and natural product synthesis. Due to the prevalence of this bond class, many synthetic routes have been developed over time to meet the demand. The most recent and robust C-N bond formation reaction is the palladium catalyzed Buchwald-Hartwig amination. Considering the importance of the Buchwald-Hartwig amination, a high-throughput experimentation (HTE) campaign was devised to create a library in which chemists can refer to optimal reaction conditions and ligand/catalyst choice based on the nature of their substrates to be coupled. This study showed trends for the appropriate choice of ligand and catalyst, along with what bases, temperatures, stoichiometries, and solvents are appropriate for the selected substrate combination at hand. </p>
5

Corrosion Stability of Metallic Materials in Dentistry as Studied with Electrochemical Impedance Measurements

Liu, Dan, Xie, Xuan, Holze, Rudolf 20 June 2019 (has links)
The corrosion susceptibility of selected metallic materials frequently employed in prosthetic dentistry has been examined with electrochemical methods. Results have been compared with data derived from breakthrough potential measurements performed with these materials before. Mostly agreement and/or close correlation were found, discrepancies are discussed and tentatively assigned to the different experimental conditions.

Page generated in 0.0287 seconds