• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Treatment of Trichlorothylene in the Subsurface Environment Using the Suspension of Nanoscale Palladized Iron and Electrokinetic Remediation Process

Chang, Der-guang 31 August 2005 (has links)
The objective of this research was to evaluate the treatment efficiency of a trichloroethylene (TCE) contaminated soil by combined technologies of the suspension of palladized nanoiron and electrokinetic remediation process. First, nanoiron and palladized nanoiron were prepared using the chemical reduction method. Then they were characterized by various methods. Micrographs of scanning electron microscopy have shown that a majority of these nanoparticles were in the range of 50-80 nm. Specific surface areas were determined to be 76.88 m2/g and 100.61 m2/g for the former and latter, respectively. Results of X-ray diffractometry have shown that both types of nanoiron were poor in crystallinity. Three anionic dispersants were employed for evaluating their performance in stabilizing various nanoiron. Results have demonstrated that an addition of 1 wt% of Dispersant E during nanoiron preparation would result in a good stabilization of nanoiron. If the system pH was adjusted to 2.99, nanoparticles would settle rapidly. Batch tests were carried out to investigate the effects of various operating parameters on degradation of TCE in aqueous solutions. Experimental results have indicated that palladized nanoiron outperformed nanoiron in treatment of TCE in this study. The employment of Dispersant E would enhance the treatment efficiency further. Test results also showed that a linear increase of reaction rate constant was found with an increasing dose of palladium from 0.05 wt% to 1 wt% based on the mass of nanoiron. Further, an exponential increase of reaction rate constant would be obtained with an increasing pH. As for mixing intensity, it was found to be insignificant to the treatment efficiency of TCE in aqueous solutions. The final stage of this study was to evaluate the treatment efficiency of combined technologies of the suspension of palladized nanoiron and electrokinetic remediation process in treating a TCE-contaminated soil. Test conditions used were given as follows: (1) initial TCE concentration: 160-181 mg/kg; (2) electric potential gradient: 1 V/cm; (3) daily addition of 20 mL of suspension of palladized nanoiron (2.5 g/L) to the electrode reservoir; and (4) reaction time: 6 days. Test results have shown that addition of palladized iron suspension to the cathode reservoir yielded the lowest residual TCE concentration in soil. Namely, about 92.5% removal of TCE from soil. On the other hand, addition of palladized iron suspension to the anode reservoir would enhance the degradation of TCE therein. Based on the above findings, the treatment method employed in this work was proven to be a novel and efficient one in treating TCE-contaminated soil.
2

The Preparation of Nanoscale Bimetallic Particles and Its Application on In-Situ Soil/Groundwater Remediation

Hung, Chih-hsiung 28 August 2007 (has links)
The objective of this research was to evaluate the treatment efficiency of a nitrate-contaminated soil by combined technologies of the injection of palladized nanoiron slurry and electrokinetic remediation process. First, nanoiron was prepared by two synthesis processes based on the same chemical reduction principle yielding products of NZVI-A and NZVI-B, respectively. Then they were characterized by various methods. Micrographs of scanning electron microscopy have shown that a majority of these nanoparticles were in the range of 50-80 nm and 30-40 nm, respectively. Results of nitrogen gas adsorption-desorption show that NZVI-A and NZVI-B are mesorporous (ca. 30-40 Å) with BET surface areas of 128 m2/g and 77 m2/g, respectively. Results of X-ray diffractometry have shown that both types of nanoiron were poor in crystallinity. Results of zeta-potential measurements indicated that NZVI-A and NZVI-B had the same isoelectric point at pH 6.0. Although NZVI-A and NZVI-B were found to be superparamagnetic, their magnetization values were low. Poly acrylic acid (PAA), an anionic dispersant, was employed for stabilizing various types of nanoiron. Then Palladium¡]ca. 1 wt% of iron¡^ was selected as catalysis to form palladized nanoiron¡]Pd/Fe¡^. Results have demonstrated that an addition of 1 vol. % of PAA during the nanoiron preparation process would result in a good stabilization of nanoiron and nanoscale Pd/Fe slurry. Batch tests were carried out to investigate the effects of pH variation on degradation of nitrate aqueous solutions. Experimental results have indicated that palladized nanoiron outperformed nanoiron in treatment of nitrate in this study. Apparently, an employment of catalyst would enhance the treatment efficiency. Further, an exponential increase of the reaction rate was found for the systems at low pH. The final stage of this study was to evaluate the treatment efficiency of combined technologies of the injection of palladized nanoiron¡]Pd/Fe¡^ slurry and electrokinetic remediation process in treating a nitrate-contaminated soil. Test conditions used were given as follows: (1) slurry injection to four different positions in the soil matrix; (2) electric potential gradient: 1 V/cm; (3) daily addition of 20 mL of palladized nanoiron (4 g/L) slurry to the injection position; and (4) reaction time: 6 days. Test results have shown that addition of palladized nanoiron slurry to the anode reservoir yielded the lowest residual nitrate concentration in soil. Namely, about 99.5% removal of nitrate from soil. On the other hand, the acidic condition of soil matrix around the anode reservoir would enhance the degradation of nitrate therein. Based on the above findings, the treatment method employed in this work was proven to be a novel and efficient one in treating nitrate contaminated soil.

Page generated in 0.0747 seconds