• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 361
  • 148
  • 69
  • 69
  • 30
  • 17
  • 17
  • 15
  • 10
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 856
  • 324
  • 172
  • 167
  • 165
  • 147
  • 107
  • 99
  • 97
  • 79
  • 74
  • 74
  • 70
  • 68
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Desmoplastic stromal cells modulate tumour cell behaviour in pancreatic cancer

Kadaba, Raghunandan January 2013 (has links)
Pancreatic ductal adenocarcinoma (PDAC) is characterised by an intense desmoplastic stromal response that can comprise 60 to 80% of tumour volume and has been implicated to be a factor in promoting tumour invasiveness and the poor prognosis associated with this cancer type. It is now well established that pancreatic stellate cells, which are vitamin A storing cells found in the periacinar spaces of the stroma in the normal gland, are primarily responsible for this desmoplastic reaction. Studying the interaction between stellate cells and cancer cells could provide for a better understanding of the disease process. During the evolution of PDAC, the stromal proportion increases from 4% in the normal gland to up to 80%. We hypothesised that there is an optimal proportion of stellate cells and cancer cells that modulates tumour behaviour and we attempted to dissect out this probable ‘tipping point’ for stromal composition upon cancer cell behaviour using a well-established in vitro organotypic culture model of pancreatic cancer. The cancer cell-stromal cell interaction led to extra-cellular matrix contraction and stiffening; and an increase in cancer cell number. The stromal stellate cells conferred a pro-survival and pro-invasive effect on cancer cells which was most pronounced at a stellate cell proportion of 0.66-0.83. The expression of key molecules involved in EMT and metastasis such as E-Cadherin and β-catenin showed a reduction and this was found to be most significant again at a stellate cell proportion of 0.66-0.83. Stellate cells altered the genetic profile of cancer cells leading to differential expression of genes involved in key cellular pathways such as cell-cycle and proliferation, cell movement and death, cell-cell signalling, and inflammatory response. qRT-PCR confirmed the differential expression of the top differentially expressed genes and protein validation by immunofluorescence staining using PIGR as a candidate molecule confirmed the experimental findings in human PDAC specimens. This study demonstrates that the progressive accumulation of desmoplastic stromal cells has a tumour progressive (pro-survival, pro-invasive) effect on cancer cells in addition to stiffening (contraction) of the extracellular matrix (maximum effect when the stromal cell proportion is 60-80%). This is mediated through a number of signalling cascades and molecular targets. Dampening this tumour-promoting interaction between cancer and stromal cells by ‘multi-targeting’ agents may allow traditional chemo- and/or radiotherapy to be effective.
32

Analysis of the hedgehog pathway in pancreatic adenocarinoma

Steg, Adam. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed June 10, 2008). Includes bibliographical references.
33

Clinical and experimental studies of intraperitoneal lipolysis and the development of clinically relevant pancreatic fistula after pancreatic surgery / 膵切除後膵液瘻と腹腔内脂肪分解についての臨床および実験的検討

Uchida, Yuichiro 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22304号 / 医博第4545号 / 新制||医||1040(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 坂井 義治, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
34

Paediatric non-alcoholic fatty pancreas disease and aortic intimal medial thickness: A study identifying potential fatty infiltration of the pancreas and its association with aortic IMT in children exposed to teratogens during pregnancy

Thomas, Amy January 2020 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / The incidence of non-communicable diseases is increasing worldwide, with South Africa being no exception. Non-communicable diseases are classified as non-infectious and are often referred to as lifestyle diseases as they are caused by common, modifiable risk factors such as unhealthy diet, obesity, tobacco use and lack of physical activity. Due to the increasing prevalence of childhood obesity diseases such as fatty pancreas and fatty liver are becoming more common. Cardiovascular disease, and more specifically atherosclerosis is the underlying cause in most adult deaths. Disease pathogenesis starts in childhood and can be detected via Aortic intima-media thickness (IMT). The developmental origins of health and disease hypothesis (DOHaD) proposes that exposures in-utero may result in persistent adaptations including alterations in metabolism.
35

UA62784; a Putative Inhibitor of CENP-E Kinesin-like Protein and its Effects on Human Pancreatic Cancer Cells

Henderson, Meredith C. January 2008 (has links)
UA62784 is a novel fluorenone identified in a biologic screen of compounds that are selectively cytotoxic in DPC4 (deleted in pancreatic cancer)-deleted pancreatic cancer cells. We sought to determine the mechanism of action of UA62784, and discovered it to be a potent mitotic inhibitor. UA62784 affects the ATPase activity of the mitotic kinesin centromere protein E (CENP-E), but does not affect other known mitotic kinesins. This inhibition of ATPase activity is not caused by an inhibition of microtubule binding nor is it caused by a failure of the kinesin to translocate to the nucleus during mitosis. Despite the anti-cancer properties of this drug, UA62784 is relatively insoluble and is not suitable as a lead compound for further development.Once we determined the mechanism of action of UA62784, we sought to determine if analogs would demonstrate the same potent mitotic inhibition while also offering properties such as increased solubility. A small library of chemical analogs was generated wherein each compound was a slight variation of UA62784 (termed the DPC series). Several potential leads were identified which exhibited increased solubility and/or increased cytotoxic activity. When tested for CENP-E ATPase inhibition, some compounds were noted to inhibit other kinesins as well. We therefore created a screen where each of the DPC compounds was tested for activity in Eg5, CENP-E, MKLP-1, MCAK, and KIF3C kinesins. Within these data, there is a correlation between cellular IC50 and kinesin ATPase inhibition for CENP-E and MKLP-1. A few compounds emerged from these studies, including DPC046, which has a low cellular IC50 and inhibits all five kinesins to some degree. DPC046 was used in a mouse xenograft study to determine in vivo efficacy, but no significant tumor shrinkage was seen, likely due to solubility limitations affecting the amount of bioavailable compound.From these studies we conclude that the cytotoxic effects seen in UA62784 and its analogs are due, at least in part, to their inhibition of kinesin proteins. We demonstrate that compounds that inhibit CENP-E and other kinesin proteins hold promise in cytotoxically targeting pancreatic cancer cells. Further development is needed to optimize DPC046 compound solubility in order to increase in vivo efficacy.
36

Development, Characterization, and Assessment of a Tissue-Engineered Prevascularized Pancreatic Islet Encapsulation Device

Hiscox, Alton January 2008 (has links)
Islet transplantation for the purpose of treating insulin-dependent diabetes is currently limited by several factors, most significantly, islet survival post transplantation. In the following dissertation, a tissue-engineered prevascularized pancreatic encapsulating device (PPED) was designed, developed, and evaluated. Microvessel fragments placed within a 3-dimensional collagen-based matrix produce and secrete vascular endothelial growth factor, and inosculate with the host circulation. Isolated islets placed within collagen gels exhibited four-fold more insulin release in response to glucose stimulation than islets in tissue culture. The insulin released by β-cells in islets encapsulated in collagen exhibited unobstructed diffusion within the collagen gels. Subsequent studies evaluated the ability to create a sandwich comprised of two layers of prevascularized collagen gels around a central collagen gel containing islets. In vitro characterization of the islets within these constructs showed that islets are functional and respond to glucose stimulation. The PPEDs were implanted subcutaneously into SCID mice. Islet survival was assessed after 7, 14, and 28 days. Immunohistochemical analysis was performed on the implants to detect insulin and the presence of intraislet endothelial cells. At all time points, insulin was localized in association with intact and partially dissociated islets. Moreover, cells that exhibited insulin staining were co-localized with intraislet endothelial cells. Lastly, dextran-perfused PPEDs showed host perfusion throughout the implant, including perfusion to structures that are morphologically consistent with pancreatic islets. These data indicate that the PPED enhances islet survival by supporting islet viability, by maintaining intraislet endothelial cells, and by enhancing reperfusion to the islets.
37

Regenerating gene (reg) expression : studies in the BB rat and man

Banister, Susan H. January 1992 (has links)
No description available.
38

The role of TPD52 in the pancreatic β cell

Manning, Yashka January 2009 (has links)
Tumour protein D52 is hypothesised to be involved in regulated secretion in the pancreatic acinar cell, indicated by rapid phosphorylation in response to secretagogue stimulation. The phosphorylation status of TPD52 in response to glucose stimulation in the pancreatic β cell was analysed by an <i>in vitro</i> method involving the incorporation of  <sup>32</sup>P-ATP into the TPD52 protein. Limitations of the system prevented the full confirmation of the rapid phosphorylation of TPD52 in response to glucose stimulation, however preliminary data suggested this was likely to occur. Bio-informatic phosphorylation site prediction was used and we hypothesised that CaMKII was the key enzyme phosphorylating TPD52 in the β cell at the serine phosphorylation site within the motif SPTFKsFEEKV. Proteomic analysis of the phosphorylated TPD52 isoform confirmed the novel identification of the motif phosphorylated by CaMKII. To determine the effect of TPD52 on regulated secretion we reduced TPD52 RNA levels using vector based siRNA. Two stable knockdown cell lines were created  showing a 50 % and 80 % reduction in RNA levels. No difference was observed in glucose stimulated insulin secretion between TPD52 knockdown and control cells. Patch clamp experiments also showed no significant difference in capacitance changes following depolarisation between knockdown and control clones. Quantification of insulin granule number and size from TEM pictures confirmed a high level of inter-clonal variation. Focus shifted to explore the previously published protein interaction between TPD52 and MAL2 as both proteins have been identified within the β cell. The original interaction between MAL2 and TPD52 was confirmed; however, when natural isoforms with shorter N-terminal regions were substituted for TPD52 and MAL2 the interaction was diminished slightly. This suggests that the N-terminal regions are not integral to the interaction between the proteins, but are perhaps required for stability of the complex.
39

Studying the role of integrin αVβ6 in pancreatic cancer

Vallath, Sabarinath S. January 2013 (has links)
Pancreatic cancer is often referred to as the “silent killer“ due to the asymptomatic nature of the disease in the early stages and the extremely poor prognosis overall. The average one-year survival rate for PDAC patients is 24% (American Cancer Society, facts and figures, 2010), decreasing to 5%-6% over 5 years (WHO report, Pancreatic cancer, 2010). Only 20% of patients are suitable for surgical resection at the time of diagnosis and treatment options available to PDAC patients have not improved significantly over the past few decades. Thus novel therapeutic approaches are essential to treat this disease. Our experimental, clinical and pre-clinical data suggest integrin αvβ6 may be a suitable target. Bioinformatics studies using the Pancreatic Expression Database revealed that the β6 gene (ITGB6) was highly up regulated in pancreatic ductal carcinoma (PDAC) compared with normal pancreas. Further analysis carried out showed that there was a significant correlation between ITGB6 expression at the mRNA level and survival in a cohort of 292 PDAC patients. Immunohistochemistry analysis on two separate patient cohorts (n=118 and n=147) showed that normal pancreas lacked αvβ6 expression whereas 91% of PDAC tissues expressed αvβ6 at the protein level. There was no significant correlation between αvβ6 expression and survival at the protein level in both cohorts of patients tested. Flow cytometry and Western blotting analyses on a panel of PDAC cell lines confirmed expression of αvβ6 in PDAC cell lines. This study investigated the functional role of αvβ6 in PDAC cell lines. Antibody mediated function blockade of αvβ6 significantly inhibited proliferation in a dose dependent manner, specifically in αvβ6 positive PDAC cell lines. A significant reduction in migration and invasion was also observed in a panel of αvβ6 positive PDAC cell lines when treated with an αvβ6 function-blocking antibody. αvβ6 targeted antibody mediated therapy in combination with gemcitabine significantly inhibited tumour growth in a physiologically relevant pre-clinical subcutaneous xenograft model of PDAC. These data reaffirms that αvβ6 is a potential novel therapeutic target and an αvβ6 specific function-blocking antibody can be used as a novel agent to treat pancreatic adenocarcinoma patients.
40

Modulation of the tumor microenvironment by the CXCR4 antagonist AMD3100 in pancreatic and colorectal adenocarcinoma

Smoragiewicz, Martin January 2019 (has links)
No description available.

Page generated in 0.0452 seconds