• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Learning Recommendation on Learning Performance in a Paper-based and Digital Materials Seamlessly Integrated System

Huang, Yen-Chieh 17 August 2010 (has links)
Books and printed materials have been used as a major learning content for thousands of years. Nowadays, Smartphone is considered as an important tool for mobile learning. This study designed a learning environment with paper and Smartphone which seamlessly integrates printed materials and digital materials. The idea is to augment the traditional paper-based materials with plenty of digital materials available on the Internet. Furthermore, because both book and Smartphone are with very good mobility, the designed system is also very suitable for mobile learning. Two special mechanisms were designed for supporting learning activities, and their effects on learning performance were evaluated. The first one is learning recommendation which is generated based on the learning portfolio. The second one is automated content connection which can reduce the loading of context switching between printed materials and digital materials so as learners can be more concentrated on learning tasks. A system was designed and implemented for conducting an experiment and data collection. The statistic analysis shows that learning recommendation has a significant positive effect on learning performance; however, the effect of automated content connection on learning performance is not significant. Besides, the questionnaire survey also shows that learners have positive attitude toward the acceptance of the learning system designed in this study. Based on the results, some implications and suggestions are provided for researchers and instructors.
2

Super-stretchable paper-based materials for 3D forming

Khakalo, Alexey, Kouko, Jarmo, Retulainen, Elias, Rojas, Orlando J. 30 May 2018 (has links)
Paper is renewable, recyclable, sustainable and biodegradable material and, as a result, paper-based materials are widely used in the world packaging market. However, paper-based materials cannot compete with plastics in terms of processability into various 3D shapes. This is due to poor formability of paper, which is closely associated with its toughness. To improve paper formability, we report on a facile and green method that combines fiber and paper mechanical modifications at different structural levels as well as biopolymer treatment via spraying. As a result, a remarkable elongation of ∼30% was achieved after proposed combined approach on the laboratory scale. At the same time, a significant increase in tensile strength and stiffness (by ∼306% and ∼690%, respectively) was observed. Overall, an inexpensive, green, and scalable approach is introduced to improve formability of fiber networks that in turn allows preparation of 3D shapes in the processes with fixed paper blanks such as vacuum forming, hydroforming, hot pressing, etc.
3

Super-stretchable paper-based materials for 3D forming

Khakalo, Alexey, Kouko, Jarmo, Retulainen, Elias, Rojas, Orlando J. 30 May 2018 (has links) (PDF)
Paper is renewable, recyclable, sustainable and biodegradable material and, as a result, paper-based materials are widely used in the world packaging market. However, paper-based materials cannot compete with plastics in terms of processability into various 3D shapes. This is due to poor formability of paper, which is closely associated with its toughness. To improve paper formability, we report on a facile and green method that combines fiber and paper mechanical modifications at different structural levels as well as biopolymer treatment via spraying. As a result, a remarkable elongation of ∼30% was achieved after proposed combined approach on the laboratory scale. At the same time, a significant increase in tensile strength and stiffness (by ∼306% and ∼690%, respectively) was observed. Overall, an inexpensive, green, and scalable approach is introduced to improve formability of fiber networks that in turn allows preparation of 3D shapes in the processes with fixed paper blanks such as vacuum forming, hydroforming, hot pressing, etc.

Page generated in 0.0939 seconds