1 |
Morphological and functional characterization of the neurotransmitter GABA in adult rat taste budsCao, Yu, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 87-97).
|
2 |
Novel aspects of autocrine/paracrine regulation of growth hormone secretion and synthesis in grass carp pituitary cellsZhou, Hong, 周紅 January 2003 (has links)
(Uncorrected OCR)
Abstract of thesis entitled
NOVEL ASPECTS OF AUTOCRINEIP ARACRINE REGULATION OF GROWTH HORMONE SECRETION AND SYNTHESIS IN GRASS CARP PITUITARY CELLS
Submitted by
ZHOUHONG
for the degree of Doctor of Philosophy at The University of Hong Kong
in March 2003
In this study, autocrine/paracrine regulation of growth hormone (GH) synthesis and secretion by local interactions of gonadotrophs and somatotrophs was examined in vitro in pituitary cells prepared from Chinese grass carp (Ctenopharyngodon idellus). Treatment with exogenous OH and gonadotropin (OTH) resulted in a dose-dependent increase in basal GH release, GH production, and GH mRNA levels. However, the opposite effects were observed by removing endogenous OR and OTH using immunoneutralization. Furthermore, GR and OTH immunoneutralizations at the pituitary level were effective in blocking the stimulatory influence on GH mRNA expression induced by GH-releasing factors in fish, including GnRH, dopamine, and PACAP38�Apparently" GH-induced GH gene expression was mediated by increasing the T1/2 ofGH mRNA in the cytoplasm and enhancing the production of GH primary transcripts in the nucleus. Since GH-induced OR mRNA gene expression could be blocked by inhibiting JAK2, P42144MAPK, P38MAPK, and PI3K, it is likely that the JAK/MAPK and JAK/PI3K pathways are involved in the GH receptor signaling. Similarly, exogenous GTH increased the production ofGH primary transcripts. However, it did not improve OR mRNA stability but rather enhanced the turnover of GH transcripts. GTR also increased cAMP production in carp pituitary cells. GTH-induced GH mRNA expression Was mimicked by activating cAMP synthesis and blocked by inhibiting adenylate cyclase (AC) and PKA.. GTH-induced OR mRNA expression was also sensitive to inhibition of JAKz, P42/44MAPK, P3SM.AP1C and PI3K. Similar inhibitions, except for PI3K, were all effective in blocking OR mRNA expression
induced by activation of cAMP synthesis. These results indicate that GTH may induce GR gene expression through the AC/ cAMP/PKA pathway secondary coupled to JAK.2 andlor MAPK. Apparently, a cAMP-independent PI3K component is also involved in the post-receptor signaling. Using a colunm perifusion approach, the dynamic interactions between somaotrophs and gonadotrophs were examined. In this case, exogenous OTR induced a rapid rise in basal GH secretion, whereas exogenous GR was found to inhibit basal GTR release. In parallel studies, GTHinduced OR mRNA expression was abolished by OR immunoneutralization. Similarly, GTR immunoneutralization blocked GR-induced OR mRNA expression in carp pituitary cells. These results, as a whole, indicate that endogenously secreted OH and GTR, besides their functions as endocrine hormones, serve as novel autocrine/paracrine factors at the pituitary level to modulate GH secretion, OH production, OH gene expression, and somatotroph sensitivity to stimulation by hypothalamic regulators. These stimulatory influences of GH and GTR on OR gene expression axe exerted at the level of GR rnRNA stability and OH gene transcription, presumably via a direct coupling to the JAK/MAPK and JAKiPI3K cascades or an indirect coupling via the AC/cAMP/PKA pathway. Apparently, a local il1trapituitary feedback loop is present. In this case, GTH released from gonadotrophs stimulates GH secretion in neighboring somatotrophs. GR release from somatotrophs is essential to maintain basal GH synthesis and secretion and also exerts a negative feedback on basal GTB release. This intrapituitary feedback loop formed by local interactions between gonadotrophs and somatotrophs may represent a novel mechanism to control OR gene expression in lower vertebrates. / abstract / toc / Zoology / Doctoral / Doctor of Philosophy
|
3 |
The human fetal membranes, decidua and placenta as paracrine system: y Ronda A. MaaskantMaaskant, Ronda A January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 116-131). / Microfiche. / xvi, 131 leaves, bound ill. (some col.) 29 cm
|
4 |
Roles of activin paracrine system in the oocyte maturation of the zebrafish, Danio rerio. / CUHK electronic theses & dissertations collection / Digital dissertation consortiumJanuary 2001 (has links)
Pang Yefei. / "August 2001." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 161-197). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
5 |
Granulocyte-macrophage colony stimulating factor (GM-CSF) : a paracrine regulator in the pre-implantation mouse uterus / Sarah A. Robertson.Robertson, Sarah A. January 1993 (has links)
Bibliography: leaves 175-203. / xxix, 203 leaves, [14] leaves of plates : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Investigates whether cytokines influence the development of the embryo prior to implantation. / Thesis (Ph.D.)--University of Adelaide, Depts. of Obstetrics and Gynaecology and Microbiology and Immunology, 1993
|
6 |
Paracrine factors and regulation of regional kidney perfusionRajapakse, Niwanthi W. January 2004 (has links)
Abstract not available
|
7 |
An IL-4-dependent macrophage-iNKT cell circuit resolves sterile inflammation and is defective in mice with chronic granulomatous diseaseZeng, Melody Yue 03 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The immune system initiates tissue repair following injury. In response to sterile tissue injury, neutrophils infiltrate the tissue to remove tissue debris and subsequently undergo apoptosis. Proper clearance of apoptotic neutrophils in the tissue by recruited macrophages, in a process termed efferocytosis, is critical to facilitate the resolution of
inflammation and tissue repair. However, the events leading to suppression of sterile inflammation following efferocytosis, and the contribution of other innate cell types are not clearly defined in an in vivo setting. Using a sterile mouse peritonitis model, we identified IL-4 production from efferocytosing macrophages in the peritoneum that activate invariant NKT cells to produce cytokines including IL-4 and IL-13. Importantly, IL-4 from macrophages functions in autocrine and paracrine circuits to promote alternative activation of peritoneal exudate macrophages and augment type-2 cytokine production from NKT cells to suppress inflammation. The increased peritonitis in mice deficient in IL-4, NKT cells, or IL-4Ra expression on myeloid cells suggested that each is
a key component for resolution of sterile inflammation. The phagocyte NADPH oxidase, a multi-subunit enzyme complex we demonstrated to require a physical interaction between the Rac GTPase and the oxidase subunit gp91phox for generation of reactive oxygen species (ROS), is required for production of ROS within macrophage phagosomes containing ingested apoptotic cells. In mice with X-linked chronic
granulomatous disease (X-CGD) that lack gp91phox, efferocytosing macrophages were unable to produce ROS and were defective in activating iNKT during sterile peritonitis,
resulting in enhanced and prolonged inflammation. Thus, efferocytosis-induced IL-4 production and activation of IL-4-producing iNKT cells by macrophages are immunomodulatory events in an innate immune circuit required to resolve sterile
inflammation and promote tissue repair.
|
Page generated in 0.0886 seconds