Spelling suggestions: "subject:"paralleled algorithmus"" "subject:"paralleled baumalgorithmus""
1 |
Hierarchical Matrix Techniques on Massively Parallel ComputersIzadi, Mohammad 11 December 2012 (has links) (PDF)
Hierarchical matrix (H-matrix) techniques can be used to efficiently treat dense matrices. With an H-matrix, the storage
requirements and performing all fundamental operations, namely matrix-vector multiplication, matrix-matrix multiplication and matrix inversion
can be done in almost linear complexity.
In this work, we tried to gain even further
speedup for the H-matrix arithmetic by utilizing multiple processors. Our approach towards an H-matrix distribution
relies on the splitting of the index set.
The main results achieved in this work based on the index-wise H-distribution are: A highly scalable algorithm for the H-matrix truncation and matrix-vector multiplication, a scalable algorithm for the H-matrix matrix multiplication, a limited scalable algorithm for the H-matrix inversion for a large number of processors.
|
2 |
Hierarchical Matrix Techniques on Massively Parallel ComputersIzadi, Mohammad 12 April 2012 (has links)
Hierarchical matrix (H-matrix) techniques can be used to efficiently treat dense matrices. With an H-matrix, the storage
requirements and performing all fundamental operations, namely matrix-vector multiplication, matrix-matrix multiplication and matrix inversion
can be done in almost linear complexity.
In this work, we tried to gain even further
speedup for the H-matrix arithmetic by utilizing multiple processors. Our approach towards an H-matrix distribution
relies on the splitting of the index set.
The main results achieved in this work based on the index-wise H-distribution are: A highly scalable algorithm for the H-matrix truncation and matrix-vector multiplication, a scalable algorithm for the H-matrix matrix multiplication, a limited scalable algorithm for the H-matrix inversion for a large number of processors.
|
Page generated in 0.0586 seconds