• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of Resonances in a Converter Module including Characterization of IGBT Parasitics

Sinyan, Ensa January 2013 (has links)
Fast switching operations in IGBTs generate electromagnetic field disturbances, which might cause EMI and functionality issues. For higher frequency characterization, the parasitic inductances and capacitances have to be considered. The characterization of the electromagnetic field disturbances in- and around the converter module could be predicted early in the design. The study involves a high frequency characterization of electric fields (Efield), magnetic fields (H-fields) and the surface currents distribution in a converter module. The high frequency electromagnetic software (CST) was used for the analysis. A given 3D CAD model of an AC/DC converter module was analyzed in CST. The CAD contained IGBT bus-bars interconnections, converter casing, heat sink and other metallic structures. The ACside has six IGBTs and the DC-side has a chopper which has two switches. The IGBTs ONstate and OFF state was modeled with lumped elements. The DC link capacitor was just modeled as lumped elements, while the metallic capacitor casing was included in the 3D model for analyzing the field distribution inside the converter casing. To check the model accuracy, CST models were compared with PEEC (Partial Element Equivalent Circuit) models for simple antenna cases. Using the converter geometry, CST estimates the parasitics and the eventual current, voltage and electromagnetic field distributions for a given excitation signal. The DC-link was excited with a step pulse and the fields were computed. With consideration of specific design details, the modeling approach developed in this study, could be used to construct high frequency models of converter modules for different projects.

Page generated in 0.0979 seconds