• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche asymptotique pour l'étude mathématique et la simulation numérique de la propagation du son en présence d'un écoulement fortement cisaillé

Joubert, Lauris 26 November 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre d'étude de la simulation de la propagation du son en écoulement. L'objectif de ces travaux est l'obtention de modèles approchés permettant une prise en compte aisée des zones de fortes variations de l'écoulement porteur (couche limite de paroi, couche de mélange...). Le modèle mathématique retenu pour l'étude est celui des équations de Galbrun. La première partie est consacrée à la propagation acoustique dans un tuyau mince bidimensionnel. Une analyse asymptotique qui s'apparente à une analyse basse fréquence est menée pour obtenir un problème approché original, faisant intervenir un terme intégral non local vis à vis de la coordonnée transverse. Du fait de son originalité, l'analyse de stabilité est complexe et nécessite une étude ad hoc. Cette approche nouvelle permet de retrouver des résultats sur la stabilité des écoulements incompressible, mais aussi d'en établir de nouveaux. Nous proposons ensuite une méthode de résolution numérique basée sur une expression quasi-explicite de la solution. La question de la prise en compte des couches limites de paroi fait l'objet de la deuxième partie. Nous considérons toujours un problème bidimensionnel à paroi plane. Les cas d'une paroi parfaitement rigide et d'une paroi sur laquelle on impose une condition d'impédance sont traités. Dans les deux cas nous remplaçons la couche limite par une condition aux limites approchée, au moyen d'une analyse asymptotique. Ces conditions font intervenir la résolution du problème limite du tube et l'analyse de stabilité repose sur les résultats de la première partie. Nous explorons ensuite les propriétés physiques et mathématiques de ces problèmes approchés.

Page generated in 0.0502 seconds