• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Configurations de l'aimantation dans des objets magnétiques à dimensionalité réduite. Relation entre magnétisme et transport

Prejbeanu, Ioan Lucian 12 December 2001 (has links) (PDF)
Ce travail de thèse est constitué de deux parties distinctes. La première consiste en l'étude de la magnétorésistance de parois de domaines magnétiques dans des nanofils de cobalt monocristallin. Ces nanofils ont été fabriqués par lithographie électronique et gravure à partir de films minces épitaxiés, à forte anisotropie uniaxiale planaire. Le confinement de l'aimantation qui résulte de la nanos-tructuration affecte fortement sa distribution. Différentes configurations micromagnétiques sont induites dans ces fils selon qu'ils sont découpés parallèlement ou perpendiculairement à l'axe de facile aimantation cristallin. Ces configurations dépendent fortement de l'histoire magnétique. Le retournement de l'aimantation dans ces fils a été étudié en détail, à l'aide de mesures de magnétotransport. Celles ci ont été interprétées dans le cadre des modèles décrivant la magnétorésistance de parois et les effets galvanomagnétiques classiques des matériaux ferromagné-tiques. Il ressort de cette étude que la contribution magnétorésistive des parois est positive et augmente à basse température. La seconde partie de ce travail est consacrée à l'étude du magnétisme des réseaux de plots circulaires de cobalt polycristallin, fabriqués par nano-impression. Dans les réseaux les moins denses, où les interactions magnétosta-tiques entre plots sont négligeables, différents mécanismes de renversement de l'aimantation ont été identifiés en fonction des dimensions des objets: une rotation cohérente de l'aimantation ou la formation d'un, voire de deux vortex. Dans les réseaux les plus denses, les interactions magnétostatiques sont à l'origine de phénomènes de renversement collectif de l'aimantation. Elles entraînent la formation, par un processus d'avalanche, de chaînes de plots monodomaines ou contenant des vortex de sens de circulation identique. Elles imposent au processus de renversement, et notamment au champ de nucléation, d'être anisotrope, de symétrie identique à celle de la maille du réseau.
12

Effets électriques lors de la résonance ferromagnétique de nanostructures et de contacts atomiques

Rousseau, Olivier 16 December 2011 (has links) (PDF)
Le but de cette thèse est l'étude des propriétés de résonance ferromagnétique (RFM) de nanostructures et contacts atomiques. Pour ce faire, nous exploitons le fait que les propriétés de transport électrique sont dominées par le contact atomique, et nous utilisons une détection électrique. Nous avons développé un nouveau dispositif expérimental dans lequel un dispositif mécanique de jonctions à cassure est conçu pour un environnement hyperfréquence où les mesures électriques peuvent être réalisées avec des champs magnétiques statiques et dynamiques variables. Des nanostructures ont d'abord été mesurées pour déterminer la fiabilité et la grande sensibilité de notre système. Ensuite la susceptibilité, de parois de domaines à des fréquences supérieures à celles les propageant, a été déterminée comme indépendante de la fréquence. Cette susceptibilité était environ 10 fois supérieure à celle des domaines saturés. Le dispositif expérimental permet également d'étudier l'interaction entre courants de spins et propriétés dynamiques de nanostructures pendant la résonance ferromagnétique. Les courants de spins générés dynamiquement à la RFM ont été mesurés en utilisant l'effet Hall inverse de spin dans des nanostructures Py/Pt. L'influence, sur la RFM, des courants de spin inject'es par effet Hall de spin dans le platine, y a également été observée. Dans les contacts atomiques la RFM a aussi été étudiée à l'aide de mesures du signal rectifié. Lors de la cassure de nos nanostructures de cobalt ou de permalloy, de nouveaux modes de résonance apparaissent à des champs plus élevés que la résonance uniforme. Nous attribuons cet effet à la modification des champs démagnétisant lors de la réduction du diamètre de la constriction. Dans la géométrie du contact atomique, nous avons mesuré la résonance de parois de domaines contraintes. Dans ce cas, le signal rectifié généré par quelques atomes, dépend fortement de la fréquence et peut atteindre des valeurs 1000 fois supérieures à celles de la RFM des domaines avant cassure.
13

Le mouvement des parois des domaines magnétiques dans le fil de CoFeB induit par le courant polarisé / Spin-polarized current-induced domain wall motion in CoFeB nanowires

Zhang, Xueying 15 May 2018 (has links)
Cette thèse est consacrée aux recherches des propriétés statiques et dynamiques des parois de domaines magnétiques (DW pour Domain Wall) dans les nanofils CoFeB. Un système de mesure basé sur un microscope Kerr à haute résolution a été mis en place et utilisé pour ces recherches.Tout d'abord, les phénomènes liés à la tension interfaciale des parois ont été étudiés. La contraction spontanée des bulles de domaine a été observée directement en utilisant le microscope Kerr. Ce phénomène a été expliqué en utilisant le concept de la pression de Laplace due à l'énergie interfaciale des parois. L'énergie interfaciale des parois a été quantifiée en mesurant le champ externe nécessaire pour stabiliser ces bulles. Le mécanisme de la piégeage et de la dépiégeage des parois dans certaines géométries artificielles, comme la croix de Hall ou l'entrée reliant un carré de nucléation et un fil, a été expliqué en utilisant le concept de tension interfaciale des parois et a été utilisé pour extraire l'énergie interfaciale des parois. Bénéficiant de ces études, une méthode permettant de quantifier directement le coefficient des Interactions de Dzyaloshinskii- Moriya (DMI pour Dzyaloshinskii- Moriya Interaction) à l'aide du microscope Kerr a été proposée. En outre, un nouveau type de capteur magnétique basé sur l'expansion réversible de paroi en raison de la tension interfaciale a été proposé et vérifié en utilisant des simulations micromagnétiques.Deuxièmement, les propriétés dynamiques des parois dans le film et les fils Ta / CoFeB / MgO ont été étudiées. La vitesse du propagation des parois induite par le champ magnétique ou par l'effet combiné des impulsions de champ magnétique synchronisées et des impulsions de courant électrique a été mesurée. En régime précessionne, la vitesse du mouvement DW induite par l'effet combiné du champ et du courant est égale à la superposition des vitesses entraînées par le champ ou le courant indépendamment. Ce résultat nous a permis d'extraire la polarisation de spin de CoFeB dans cette structure. Les effets de piégeage du mouvement des parois dans les fils étroits ont été étudiés. Des champs de dépiégeage associés aux gros défauts pour le mouvement des parois induit par champ dans les nanofils a été mesurée. Il a été constaté que les effets de piégeage deviennent plus sévères lorsque la largeur w des fils diminue. Une relation linéaire entre le champ de piégeage et 1/w a été trouvée. L'origine de ces sites d'ancrage durs ainsi que leurs influences sur la vitesse de mouvement des parois ont été discutées. En outre, il a été constaté que l'effet d'épinglage était amélioré lorsque le courant était appliqué, quelle que soit la direction relative entre le mouvement des parois et le courant. Cet accroissement pourrait être expliqué par l'effet du courant de Hall de spin de la sous-couche (Ta). Bien qu'il n'y ait pas eu de DMI ou de champ planaire, le courant de Hall de spin, polarisé dans la direction transversale, peut exercer un couple sur la parois de type de Bloch, une fois que la paroi s'éloigne de la direction transversale.Enfin, un dispositif mémoire de circuit en forme d'anneau basée sur le travail combiné de STT et SOT a été proposée. Comparée à la mémoire de piste traditionnelle en forme de ligne, cette mémoire en forme d'anneau permet au paroi de demaine de se déplacer dans un nanofil en forme d'anneau sans être éjecté, évitant ainsi la perte des informations associées. Le travail de conception et d'optimisation a été réalisé avec des simulations micromagnétiques. / This thesis is dedicated to the research of the static and dynamic properties of magnetic Domain Walls (DWs) in CoFeB nanowires. A measurement system based on a high-resolution Kerr microscope was implemented and used for these research.First, phenomena related to the DW surface tension was studied. A spontaneous collapse of domain bubbles was directly observed using the Kerr microscope. This phenomenon was explained using the concept of the Laplace pressure due to the DW surface energy. The surface energy of DW was quantified by measuring the external field required to stabilize these bubbles. The DW pinning and depinning mechanism in some artificial geometries, such as the Hall cross or the entrance connecting a nucleation pad and a wire, was explained using the concept of DW surface tension and was used to extract the DW surface energy. Benefited from these studies, a method to directly quantify the coefficient of Dzyaloshinskii- Moriya Interactions (DMI) using Kerr microscope has been proposed. In addition, a new type of magnetic sensor based on the revisable expansion of DW due to DW surface tension was proposed and verified using micromagnetic simulations.Second, the dynamic properties of DWs in Ta/CoFeB/MgO film and wires were studied. The velocity of DW motion induced by magnetic fields or by the combined effect of synchronized magnetic field pulses and electrical current pulses was measured. In steady flow regime, the velocity of DW motion induced by the combined effect of the field and the current equals to the superposition of the velocities driven by field or current independently. This result allowed us to extract the spin-polarization of CoFeB in this structure. Pinning effects of DW motion in narrow wires was studied. Depinning fields of hard pinning sites for the field-driven DW motion in nanowires was measured. It was found that the pinning effects become severer as the width w of the wires scaled down. A linear relationship between the depinning field and w was found. The origin of these hard pinning sites, as well as their influences on the DW motion velocity, was discussed. Furthermore, it was found that the pinning effect was enhanced when a current was applied, no matter the relative direction between the DW motion and the current. We propose a possible explanation, which would be an effect of the spin Hall current from the sublayer (Ta). Although there was no DMI or in-plane field, the spin Hall current, which was polarized in the transverse direction, can still exert a torque on the Bloch DW, once the DW tilts away from the transverse direction.At last, a ring-shaped racetrack memory based on the combined work of STT and has been proposed. Compared with the traditional line-shaped racetrack memory, this ring-shaped memory allows the DW moving in a ring-shaped nanowire and the data dropout problem can be avoided. The design and optimization work was performed with micromagnetic simulations.
14

Propagation des parois de domaines combinant courant polarisé et commutation toute optique / Domain wall propagation combining spin-polarized current and all-optical switching

Zhang, Boyu 23 May 2019 (has links)
Depuis la première observation de désaimantation ultra-rapide dans des films de Ni soumis à une excitation laser pulsée, on a assisté à un grand intérêt de comprendre l'interaction entre les impulsions laser ultra-courtes et l'aimantation. Ces études ont conduit à la découverte de la commutation toute optique de l'aimantation dans un alliage de film ferrimagnétique en utilisant des impulsions laser femtosecondes. La commutation toute optique permet un renversement de l’aimantation d’un matériau magnétique sans champ magnétique externe. La direction de l'aimantation résultante est donnée par la polarisation circulaire droite ou gauche de la lumière. La manipulation de l'aimantation par un faisceau laser a longtemps été limité à un seul type de matériau, mais ce mécanisme s'est avéré être un phénomène plus général qui s’applique à une grande variété de matériaux ferromagnétiques, y compris des alliages, des empilements et des hétérostructures, ainsi que des hétérostructures ferrimagnétiques synthétiques de terres-rares. Récemment, nous avons observé le même phénomène dans des films ferromagnétiques simples, ouvrant ainsi la voie à une intégration de l'écriture toute optique dans les dispositifs spintroniques. De plus, dans des matériaux de type [Co/Pt] ou [Co/Ni] avec une polarisation de spin élevée et une anisotropie magnétique perpendiculaire contrôlable, un mouvement de parois de domaines induit par un courant polarisé peut être observé dans des pistes magnétiques (couple spin-orbite ou couple de transfert de spin), ce qui présente un grand intérêt pour des applications spintroniques basse consommation et de densité élevée, telles que le concept de mémoire racetrack et la logique magnétique. Cependant, la densité de courant requise pour le mouvement des parois de domaines est encore trop élevée pour permettre la réalisation de dispositifs à faible puissance. Dans ce contexte innovant, la recherche effectuée dans le cadre de ma thèse s’est concentrée sur la manipulation de parois de domaines dans les pistes fabriquées à partir de films minces à forte anisotropie magnétique perpendiculaire en combinant à la fois les effets du courant polarisé et ceux de la commutation toute optique. Différents films minces ont été explorés afin d'étudier les effets combinés optiques dépendant de l'hélicité et des couples spin-orbite ou de transfert de spin sur le mouvement des parois de domaines. Nous avons montré que les parois de domaine peuvent rester piégées sous une hélicité circulaire du laser et dépiégées par une hélicité circulaire opposée, et la densité de courant polarisé seuil peut être considérablement réduite en utilisant un laser femtoseconde. Nos résultats sont prometteurs pour le développement de nouveaux dispositifs photoniques-spintroniques de faible puissance. / Since the first observation of ultrafast demagnetization in Ni films arising from a pulsed laser excitation, there has been a strong interest in understanding the interaction between ultrashort laser pulses and magnetization. These studies have led to the discovery of all-optical switching (AOS) of magnetization in a ferrimagnetic film alloy of GdFeCo using femtosecond laser pulses. All-optical switching enables an energy-efficient magnetization reversal of the magnetic material with no external magnetic field, where the direction of the resulting magnetization is given by the right or left circular polarization of the light. The manipulation of magnetization through laser beam has long been restricted to one material, though it turned out to be a more general phenomenon for a variety of ferromagnetic materials, including alloys, multilayers and heterostructures, as well as rare earth free synthetic ferrimagnetic heterostructures. Recently, we have observed the same phenomenon in single ferromagnetic films, thus paving the way for an integration of all-optical writing in spintronic devices. Moreover, in similar materials, like [Co/Pt] or [Co/Ni] with high spin polarization and tunable perpendicular magnetic anisotropy (PMA), efficient current-induced domain wall (DW) motion can be observed in magnetic wires, where spin-orbit torque (SOT) or spin transfer torque (STT) provides a powerful means of manipulating domain walls, which is of great interest for several spintronic applications, such as high-density racetrack memory and magnetic domain wall logic. However, the current density required for domain wall motion is still too high to realize low power devices. This is within this very innovative context that my Ph.D. research has focused on domain wall manipulation in magnetic wires made out of thin film with strong perpendicular magnetic anisotropy combining both spin-polarized current and all-optical switching. Different material structures have been explored, in order to investigate the combined effects of helicity-dependent optical effect and spin-orbit torque or spin transfer torque on domain wall motion in magnetic wires based on these structures. We show that domain wall can remain pinned under one laser circular helicity while depinned by the opposite circular helicity, and the threshold current density can be greatly reduced by using femtosecond laser pulses. Our findings provide novel insights towards the development of low power spintronic-photonic devices.
15

Modélisation par éléments finis des dispositifs pour la spintronique : couplage auto-cohérent des équations du micromagnétisme et du transport dépendant du spin / Finite element modeling of spintronics devices : self-consistent coupling of micromagnetism and spin-dependent transport equations

Sturma, Magali 09 October 2015 (has links)
Cette thèse s'inscrit dans le contexte de l'électronique de spin et traite plus particulièrement de l'interaction réciproque entre un courant polarisé en spin et l'aimantation des structures magnétiques. Au cours de ce travail, les équations du transport diffusif dépendant du spin ont été couplées de façon auto-cohérente à l'équation de la dynamique d'aimantation dans l'approche micromagnétique au sein du code éléments finis. Cet outil numérique est appliqué à l'étude de la dynamique de parois de domaines dans différentes géométries sous l'action d'un courant polarisé. Il a permis de mettre en évidence plusieurs nouveaux phénomènes liés à l'interaction mutuelle entre l'aimantation et les spins des électrons. Pour des rubans à section rectangulaire, l'impact de cette interaction, habituellement négligée dans les modèles simplifiés, est quantifié via le calcul de la vitesse de déplacement de parois et du courant critique de Walker. Ces paramètres ont été étudiés en fonction de la largeur de paroi, du courant appliqué et des longueurs caractéristiques du transport polarisé en spin. L'augmentation du paramètre de non-adiabaticité du système, liée à l'augmentation du gradient d'aimantation ainsi qu'à une forte non-localité du modèle couplé, a été démontrée. Pour des fils à section circulaire et à diamètre modulable, une contribution supplémentaire à la non-adiabaticité du système liée, à la géométrie confinée, a été mise en évidence. Puis, les différents régimes dynamiques ainsi que les conditions de dépiégage de la paroi ont été caractérisés en fonction de la taille de constrictions. / In the context of spintronics this thesis studies the mutual interaction between a spin polarised current and the magnetization of magnetic structures. During this work, the diffusive spin transport equations were coupled in a self-consistent manner with the magnetization dynamics equations in the micromagnetic approach in our homemade finite element code. This numerical tool applied to the study of domain walls dynamics in different geometries under the action of spin polarized current highlighted several new phenomena related to the mutual interaction between the magnetization and the spins of electrons. For rectangular cross section stripes, the impact of this interaction, usually neglected in simplified models, is quantified by the computation of the domain wall velocity and the Walker critical current. These quantities were studied as a function of the domain wall width, the applied current, and the spin polarised transport characteristic lengths. Increasing the non-adiabatic parameter of the system related to the increase in the magnetization gradient and a strong non-locality of the coupled model was demonstrated. For circular cross section wires with a modulated diameter, an additional contribution to the non-adiabaticity of the system related to the confined geometry is highlighted. Then the different dynamic regimes and domain wall unpinning conditions are characterised according to the constriction size.

Page generated in 0.0508 seconds