• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bottom-up, Context-Driven Visual Object Understanding

Sepehr Farhand (11799710) 20 December 2021 (has links)
Recent developments in the computer vision field achieve state-of-the-art performance by utilizing large-scale training datasets and in the absence of that, generating synthetic datasets of said magnitude. Yet, for certain applications, it is not feasible to synthesize high fidelity training data (e.g., biomedical computer vision domain), or to achieve detailed explainability for the program's decisions. Formulating a part-based approach can help alleviate the aforementioned challenges as (i) a scene can naturally be decomposed into a hierarchical part-based structure, and (ii) using domain knowledge by incorporating the object parts' topological and geometrical constraints reduces the complexity of learning and inference, benefiting methods in terms of data efficiency and computational resources. This dissertation investigates multiple applications that benefit from a part-based solution regarding the applications' performance metrics and/or computational efficiency. We develop part-based methods for registration, segmentation, unsupervised object discovery in large-scale image collections, and unsupervised unknown foreground discovery in streaming scenarios.

Page generated in 0.0621 seconds