• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle size distribution (PSD) equivalency using novel statistical comparators and PBPK input models

Ngeacharernkul, Pratak 01 December 2017 (has links)
For disperse system drug formulations, meaningful particle size distribution (PSD) comparators are essential in determining pharmaceutical equivalency and predicting biopharmaceutical equivalence in terms of the effect of particle size on the rate and extent of drug input. In formulation development and licensure, particle size characterization has been applied to establish relationships for bioequivalence of generic pharmaceutical drug products. The current approaches recommended by the US-FDA using median and span are not adequate to predict drug product performances or account for multi-modal PSD performance properties. The use of PSD similarity metric and the development and incorporation of drug release predictions based on PSD properties into PBPK models for various drug administration routes may provide a holistic approach for evaluating the effect of PSD differences on in vitro release of disperse systems and the resulting pharmacokinetic impact on drug product performance. The objectives of this study are to provide a rational approach for PSD comparisons by 1) developing similarity computations for PSD comparisons and 2) using PBPK-models to specifically account for PSD effects on drug input rates via a subcutaneous (SQ) administration route. Two techniques for measuring PSDs of reference (reference-listed drug product) and test (generic) drug products were investigated: OVL and PROB, as well as the current standard measurements of median and span. In addition, release rate profiles of each product pair simulated from modified Bikhazi and Higuchi’s model were used to compute release rate comparators such as similarity factor (f2) and fractional time ratios. A subcutaneous input PBPK model was developed and used to simulate blood concentration-time profiles of reference and test drug products. Pharmacokinetic responses such as AUC, Cmax, and Tmax were compared using standard bioequivalence criteria. PSD comparators, release rate comparators, and bioequivalence metrics were related to determine their relationships and identify the appropriate approach for bioequivalence waiver. OVL showed better predictions for bioequivalence compared to PROB, median, and span. For release profile comparisons, the f2 method was the best for bioequivalence prediction. The use of both release rate (e.g., f2) and PSD (e.g., OVL) comparison metrics significantly improved bioequivalence prediction to about 90%.
2

The influence of particle size distribution on bio-coal gasification rate as related to packed beds of particles

Bäckebo, Markus January 2020 (has links)
This thesis is a part of a collaboration between Höganäs AB and Luleå University of Technology, aiming at replacing fossil process coal with bio-coal in their sponge iron process. The difference in gasification reactivity, i.e. reaction rate, between fossil coals and bio-coals is the major challenge in the endeavor to decrease the climate impact of the existing process. The goal of this thesis is to develop a model of reaction rate for bio-coals in relation to particle size distribution. Different particle size distributions were combined and tested to see how that affects the effective reaction rate. Within the scope of this work, gasification reactivities of different materials, including coal, cokes, and bio-coals, were determined. Three bio-coals were selected to study the effect of particle size distribution on reactivity. Kinetic parameters were determined by using thermogravimetric analysis in the temperature range of 770-850 °C while varying CO2 partial pressure between 0.1-0.4 atm. The effect of particle size on the reaction rate was investigated by using particles with diameter between 0.18 and 6.3 mm. The effect of particle size distribution on the reactivity of bio-coal in a packed bed was carried out in a macro thermogravimetric reactor with a constant bed volume of 6.5 cm3 at 980 °C and 40% (vol.) of CO2. The experimental investigation in three different rate-limiting steps was done for one bio-coal sample, i.e. Cortus Bark bio-coal. The activation energy of the bio-coal was 187 kJ mol-1, and the reaction order was 0.365. For the internal diffusion control regime, an increase in particle size resulted in low reaction rate. The effective diffusivity calculated from the Thiele modulus model was 1.41*10-5 m2 s-1. For the external diffusion control regime, an increase in particle size increased the reaction rate up to a certain point where it plateaued at >1 mm. By choosing two discrete particle size distributions, where a smaller average distribution can fit into a larger average distribution the reaction rate was lowered by 30% compared to only using a single narrow particle size distribution. This solution decreased the difference of apparent reaction rate in a packed bed between the bio-coal and anthracite from 6.5 times to 4.5 times. At the moment the model is not generalized for all bio-coals. However, the developed methodology can be routinely applied to assess the different bio-coal samples. One possible error can be that pyrolysis influences the gasification rate for bio-coal that is pyrolyzed below the temperature of the gasification test. There is a clear correlation between particle size distributions, bulk density, and apparent reactivity. By mixing two distributions the reaction rate of Cortus Bark was reduced from 6.5 times the reaction rate of anthracite to 4.5.
3

Effects of Aging and Crystal Attributes on Particle Size Distributions in Breakage Experiments in Stirred Vessels

Reeves, Sheena Magtoya 30 April 2011 (has links)
Particle breakage can be significant in stirred vessels such as crystallizers. During crystallization, particle breakage can occur due to particle contact with other particles, the impeller, the suspension fluid, and/or the vessel. Such breakage produces fines and can cause filter plugging downstream. Although research has been conducted with respect to particle breakage, a comprehensive study is still needed to quantify the breakage occurring in stirred vessels. The overall goal of this research is to model the particle breakage occurring in a stirred vessel by analyzing the particle size and shape distributions that result from breakage. Breakage experiments are based on collision influences that affect the two dominant collisions types, crystal-to-crystal and crystal-to-impeller collisions. Results showed that the quantity of fines produced are affected by the solids concentration or magma density and suspension fluid utilized. Additionally, aqueous saturated solutions produced particle size distributions that differ from those obtained using a nonsolvent. Similar particle size distributions for two different materials (NaCl and KCl) are achieved in the same nonsolvent (acetonitrile) by adjusting the agitation rate using the Zwietering correlation to account for property differences; moreover, the same agitation rate adjustment produced similar distributions for KCl in acetone and acetonitrile which were both nonsolvents. However, modifications to the Zwietering correlation, such as changing the significance of the initial particle size, are proposed before this method of adjustment is deemed accurate. Number-based population modeling of particle breakage is achieved within 1-5% error for NaCl at each agitation rate investigated. Breakage modeling using a discretized population balance equation with Austin's equation for attrition and the power law form of the product function for fragmentation is a viable approach; however, more work is needed to increase the accuracy of this model.
4

Grain-scale Comminution and Alteration of Arkosic Rocks in the Damage Zone of the San Andreas Fault at SAFOD

Heron, Bretani 2011 December 1900 (has links)
Spot core from the San Andreas Fault Observatory at Depth (SAFOD) borehole provides the opportunity to characterize and quantify damage and mineral alteration of siliciclastics within an active, large-displacement plate-boundary fault zone. Deformed arkosic, coarse-grained, pebbly sandstone, and fine-grained sandstone and siltstone retrieved from 2.55 km depth represent the western damaged zone of the San Andreas Fault, approximately 130 m west of the Southwest Deforming Zone (SDZ). The sandstone is cut by numerous subsidiary faults that display extensive evidence of repeating episodes of compaction, shear, dilation, and cementation. The subsidiary faults are grouped into three size classes: 1) small faults, 1 to 2 mm thick, that record an early stage of fault development, 2) intermediate-size faults, 2 to 3 mm thick, that show cataclastic grain size reduction and flow, extensive cementation, and alteration of host particles, and 3) large subsidiary faults that have cemented cataclastic zones up to 10 mm thick. The cataclasites contain fractured host-rock particles of quartz, oligoclase, and orthoclase, in addition to albite and laumontite produced by syn-deformation alteration reactions. Five structural units are distinguished in the subsidiary fault zones: fractured sandstones, brecciated sandstones, microbreccias, microbreccias within distinct shear zones, and principal slip surfaces. We have quantified the particle size distributions and the particle shape of the host rock mineral phases and the volume fraction of the alteration products for these representative structural units. Shape characteristics vary as a function of shear strain and grain size, with smooth, more circular particles evolving as a result of increasing shear strain. Overall, the particle sizes are consistent with a power law distribution over the particle size range investigated (0.3 µm < d < 400 µm). The exponent (fractal dimension, D) is found to increase with shear strain and volume fraction of laumontite. This overall increase in D and evolution of shape with increasing shear strain reflects a general transition from constrained comminution, active at low shear strains to abrasion processes that dominate at high shear strains.
5

Impact of residential wood combustion on urban air quality

Krecl, Patricia January 2008 (has links)
<p>Wood combustion is mainly used in cold regions as a primary or supplemental space heating source in residential areas. In several industrialized countries, there is a renewed interest in residential wood combustion (RWC) as an alternative to fossil fuel and nuclear power consumption. The main objective of this thesis was to investigate the impact of RWC on the air quality in urban areas. To this end, a field campaign was conducted in Northern Sweden during wintertime to characterize atmospheric aerosol particles and polycyclic aromatic hydrocarbons (PAH) and to determine their source apportionment.</p><p>A large day-to-day and hour-to-hour variability in aerosol concentrations was observed during the intensive field campaign. On average, total carbon contributed a substantial fraction of PM10 mass concentrations (46%) and aerosol particles were mostly in the fine fraction (PM1 accounted for 76% of PM10). Evening aerosol concentrations were significantly higher on weekends than on weekdays which could be associated to the use of wood burning for recreational purposes or higher space heat demand when inhabitants spend longer time at home. It has been shown that continuous aerosol particle number size distribution measurements successfully provided source apportionment of atmospheric aerosol with high temporal resolution. The first compound-specific radiocarbon analysis (CSRA) of atmospheric PAH demonstrated its potential to provide quantitative information on the RWC contribution to individual PAH. RWC accounted for a large fraction of particle number concentrations in the size range 25-606 nm (44-57%), PM10 (36-82%), PM1 (31-83%), light-absorbing carbon (40-76%) and individual PAH (71-87%) mass concentrations.</p><p>These studies have demonstrated that the impact of RWC on air quality in an urban location can be very important and largely exceed the contribution of vehicle emissions during winter, particularly under very stable atmospheric conditions.</p>
6

Impact of residential wood combustion on urban air quality

Krecl, Patricia January 2008 (has links)
Wood combustion is mainly used in cold regions as a primary or supplemental space heating source in residential areas. In several industrialized countries, there is a renewed interest in residential wood combustion (RWC) as an alternative to fossil fuel and nuclear power consumption. The main objective of this thesis was to investigate the impact of RWC on the air quality in urban areas. To this end, a field campaign was conducted in Northern Sweden during wintertime to characterize atmospheric aerosol particles and polycyclic aromatic hydrocarbons (PAH) and to determine their source apportionment. A large day-to-day and hour-to-hour variability in aerosol concentrations was observed during the intensive field campaign. On average, total carbon contributed a substantial fraction of PM10 mass concentrations (46%) and aerosol particles were mostly in the fine fraction (PM1 accounted for 76% of PM10). Evening aerosol concentrations were significantly higher on weekends than on weekdays which could be associated to the use of wood burning for recreational purposes or higher space heat demand when inhabitants spend longer time at home. It has been shown that continuous aerosol particle number size distribution measurements successfully provided source apportionment of atmospheric aerosol with high temporal resolution. The first compound-specific radiocarbon analysis (CSRA) of atmospheric PAH demonstrated its potential to provide quantitative information on the RWC contribution to individual PAH. RWC accounted for a large fraction of particle number concentrations in the size range 25-606 nm (44-57%), PM10 (36-82%), PM1 (31-83%), light-absorbing carbon (40-76%) and individual PAH (71-87%) mass concentrations. These studies have demonstrated that the impact of RWC on air quality in an urban location can be very important and largely exceed the contribution of vehicle emissions during winter, particularly under very stable atmospheric conditions.
7

Airborne Particles in Indoor Residential Environment: Source Contribution, Characteristics, Concentration, and Time Variability

He, Congrong January 2005 (has links)
The understanding of human exposure to indoor particles of all sizes is important to enable exposure control and reduction, but especially for smaller particles since the smaller particles have a higher probability of penetration into the deeper parts of the respiratory tract and also contain higher levels of trace elements and toxins. Due to the limited understanding of the relationship between particle size and the health effects they cause, as well as instrument limitations, the available information on submicrometer (d < 1.0 µm) particles indoors, both in terms of mass and number concentrations, is still relatively limited. This PhD project was conducted as part of the South-East Queensland Air Quality program and Queensland Housing Study aimed at providing a better understanding of ambient particle concentrations within the indoor environment with a focus on exposure assessment and control. This PhD project was designed to investigate comprehensively the sources and sinks of indoor aerosol particles and the relationship between indoor and outdoor aerosol particles, particle and gaseous pollutant, as well as the association between indoor air pollutants and house characteristics by using, analysing and interpreting existing experimental data which were collected before this project commenced, as well as data from additional experiments which were designed and conducted for the purpose of this project. The focus of this research was on submicrometer particles with a diameter between 0.007 - 0.808 µm. The main outcome of this project may be summarised as following: * A comprehensive review of particle concentration levels and size distributions characteristics in the residential and non-industrial workplace environments was conducted. This review included only those studies in which more general trends were investigated, or could be concluded based on information provided in the papers. This review included four parts: 1) outdoor particles and their effect on indoor environments; 2) the relationship between indoor and outdoor concentration levels in the absence of indoor sources for naturally ventilated buildings; 3) indoor sources of particles: contribution to indoor concentration levels and the effect on I/O ratios for naturally ventilated buildings; and 4) indoor/outdoor relationship in mechanically ventilated buildings. * The relationship between indoor and outdoor airborne particles was investigated for sixteen residential houses in Brisbane, Australia, in the absence of operating indoor sources. Comparison of the ratios of indoor to outdoor particle concentrations revealed that while temporary values of the ratio vary in a broad range from 0.2 to 2.5 for both lower and higher ventilation conditions, average values of the ratios were very close to one regardless of ventilation conditions and of particle size range. The ratios were in the range from 0.78 to 1.07 for submicrometer particles, from 0.95 to 1.0 for supermicrometer particles and from 1.01 to 1.08 for PM2.5 fraction. Comparison of the time series of indoor to outdoor particle concentrations showed a clear positive relationship existing for many houses under normal ventilation conditions (estimated to be about and above 2 h-1), but not under minimum ventilation conditions (estimated to be about and below 1 h-1). These results suggest that for normal ventilation conditions and in the absence of operating indoor sources, outdoor particle concentrations could be used to predict instantaneous indoor particle concentrations but not for minium ventilation, unless air exchange rate is known, thus allowing for estimation of the "delay constant". * Diurnal variation of indoor submicrometer particle number and particle mass (approximation of PM2.5) concentrations was investigated in fifteen of the houses. The results show that there were clear diurnal variations in both particle number and approximation of PM2.5 concentrations, for all the investigated houses. The pattern of diurnal variations varied from house to house, however, there was always a close relationship between the concentration and human indoor activities. The average number and mass concentrations during indoor activities were (18.2±3.9)×10³ particles cm-³ and (15.5±7.9) µg m-³ respectively, and under non-activity conditions, (12.4±2.7)x10³ particles cm-³ (11.1±2.6) µg m-³, respectively. In general, there was a poor correlation between mass and number concentrations and the correlation coefficients were highly variable from day to day and from house to house. This implies that conclusions cannot be drawn about either one of the number or mass concentration characteristics of indoor particles, based on measurement of the other. The study also showed that it is unlikely that particle concentrations indoors could be represented by measurements conducted at a fixed monitoring station due to the large impact of indoor and local sources. * Emission characteristics of indoor particle sources in fourteen residential houses were quantified. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, smoking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than 5 times, while PM2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively. * Indoor particle deposition rates of size classified particles in the size range from 0.015 to 6 µm were quantified. Particle size distribution resulting from cooking, repeated under two different ventilation conditions in 14 houses, as well as changes to particle size distribution as a function of time, were measured using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS), and a DustTrak. Deposition rates were determined by regression fitting of the measured size-resolved particle number and PM2.5 concentration decay curves, and accounting for air exchange rate. The measured deposition rates were shown to be particle size dependent and they varied from house to house. The lowest deposition rates were found for particles in the size range from 0.2 to 0.3 µm for both minimum (air exchange rate: 0.61±0.45 h-1) and normal (air exchange rate: 3.00±1.23 h-1) ventilation conditions. The results of statistical analysis indicated that ventilation condition (measured in terms of air exchange rate) was an important factor affecting deposition rates for particles in the size range from 0.08 to 1.0 µm, but not for particles smaller than 0.08 µm or larger than 1.0 µm. Particle coagulation was assessed to be negligible compared to the two other processes of removal: ventilation and deposition. This study of particle deposition rates, the largest conducted so far in terms of the number of residential houses investigated, demonstrated trends in deposition rates comparable with studies previously reported, usually for significantly smaller samples of houses (often only one). However, the results compare better with studies which, similarly to this study, investigated cooking as a source of particles (particle sources investigated in other studies included general activity, cleaning, artificial particles, etc). * Residential indoor and outdoor 48 h average levels of nitrogen dioxide (NO2), 48h indoor submicrometer particle number concentration and the approximation of PM2.5 concentrations were measured simultaneously for fourteen houses. Statistical analyses of the correlation between indoor and outdoor pollutants (NO2 and particles) and the association between house characteristics and indoor pollutants were conducted. The average indoor and outdoor NO2 levels were 13.8 ± 6.3 ppb and 16.7 ± 4.2 ppb, respectively. The indoor/outdoor NO2 concentration ratio ranged from 0.4 to 2.3, with a median value of 0.82. Despite statistically significant correlations between outdoor and fixed site NO2 monitoring station concentrations (p = 0.014, p = 0.008), there was no significant correlation between either indoor and outdoor NO2 concentrations (p = 0.428), or between indoor and fixed site NO2 monitoring station concentrations (p = 0.252, p = 0.465,). However, there was a significant correlation between indoor NO2 concentration and indoor submicrometer aerosol particle number concentrations (p = 0.001), as well as between indoor PM2.5 and outdoor NO2 (p = 0.004). These results imply that the outdoor or fixed site monitoring concentration alone is a poor predictor of indoor NO2 concentration. * Analysis of variance indicated that there was no significant association between indoor PM2.5 and any of the house characteristics investigated (p > 0.05). However, associations between indoor submicrometer particle number concentration and some house characteristics (stove type, water heater type, number of cars and condition of paintwork) were significant at the 5% level. Associations between indoor NO2 and some house characteristics (house age, stove type, heating system, water heater type and floor type) were also significant (p < 0.05). The results of these analyses thus strongly suggest that the gas stove, gas heating system and gas water heater system are main indoor sources of indoor submicrometer particle and NO2 concentrations in the studied residential houses. The significant contributions of this PhD project to the knowledge of indoor particle included: 1) improving an understanding of indoor particles behaviour in residential houses, especially for submicrometer particle; 2) improving an understanding of indoor particle source and indoor particle sink characteristics, as well as their effects on indoor particle concentration levels in residential houses; 3) improving an understanding of the relationship between indoor and outdoor particles, the relationship between particle mass and particle number, correlation between indoor NO2 and indoor particles, as well as association between indoor particle, NO2 and house characteristics.
8

Avalanching on dunes and its effects : size statistics, stratification, & seismic surveys

Arran, Matthew Iain January 2018 (has links)
Geophysical research has long been interdisciplinary, with many phenomena on the Earth's surface involving multiple, linked processes that are best understood using a combination of techniques. This is particularly true in the case of grain flows on sand dunes, in which the sedimentary stratification with which geologists are concerned arises from the granular processes investigated by physicists and engineers, and the water permeation that interests hydrologists and soil scientists determines the seismic velocities of concern to exploration geophysicists. In this dissertation, I describe four projects conducted for the degree of Doctor of Philosophy, using a combination of laboratory experimentation, fieldwork, numerical simulation, and mathematical modelling to link avalanching on dunes to its effects on stratification, on the permeation of water, and on seismic surveys. Firstly, I describe experiments on erodible, unbounded, grain piles in a channel, slowly supplied with additional grains, and I demonstrate that the behaviour of the consequent, discrete avalanches alternates between two regimes, typified by their size statistics. Reconciling the `self-organised criticality' that several authors have predicted for such a system with the hysteretic behaviour that others have observed, the system exhibits quasi-periodic, system-spanning avalanches in one regime, while in the other avalanches pass at irregular intervals and have a power-law size distribution. Secondly, I link this power-law size distribution to the strata emplaced by avalanches on bounded grain piles. A low inflow rate of grains into an experimental channel develops a pile, composed of strata in which blue-dyed, coarser grains overlie finer grains. Associating stopped avalanche fronts with the `trapped kinks' described by previous authors, I show that, in sufficiently large grain piles, mean stratum width increases linearly with distance downslope. This implies the possibility of interpreting paleodune height from the strata of aeolian sandstones, and makes predictions for the structure of avalanche-associated strata within active dunes. Thirdly, I discuss investigations of these strata within active, Qatari barchan dunes, using dye-infiltration to image strata in the field and extracting samples across individual strata with sub-centimetre resolution. Downslope increases in mean stratum width are evident, while measurements of particle size distributions demonstrate preferential permeation of water along substrata composed of finer particles, explaining the strata-associated, localised regions of high water content discovered by other work on the same dunes. Finally, I consider the effect of these within-dune variations in water content on seismic surveys for oil and gas. Having used high performance computing to simulate elastic wave propagation in the vicinity of an isolated, barchan sand dune, I demonstrate that such a dune acts as a resonator, absorbing energy from Rayleigh waves and reemitting it over an extensive period of time. I derive and validate a mathematical framework that uses bulk properties of the dune to predict quantitative properties of the emitted waves, and I demonstrate the importance of internal variations in seismic velocity, resulting from variations in water content.
9

Modelo Estoc?stico para bloqueio de poros e redu??o de permeabilidade / A stochastic model for pore blocking and permeability reduction

Kamani, Ali Dehghan Ghanat 29 January 2014 (has links)
Made available in DSpace on 2014-12-17T14:08:54Z (GMT). No. of bitstreams: 1 AliDGK_DISSERT.pdf: 1533034 bytes, checksum: 5570fc0acd3b2b8bab1dc04b3e8c619f (MD5) Previous issue date: 2014-01-29 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios / A modelagem do transporte de suspens?es em meios porosos ? essencial para o entendimento de diversos processos de interesse industrial e cient?fico. Durante esses processos as part?culas podem ser retidas devido a diferentes mecanismos, dos quais citamos: exclus?o pelo tamanho, adsor??o, sedimenta??o e difus?o. Neste trabalho, um modelo matem?tico para o mecanismo de exclus?o pelo tamanho foi proposto e solu??es anal?ticas foram encontradas. As solu??es anal?ticas para o modelo proposto, que incorpora as distribui??es de tamanho de poros e de part?culas, foram utilizadas para prever a reten??o de part?culas, o bloqueio de poros e a redu??o de permeabilidade durante a microfiltra??o direta (dead-end microfiltration) em membranas. Foram analisados diversos cen?rios, considerando diferentes distribui??es de tamanho de poros e de part?culas. Os resultados obtidos mostraram que o processo de bloqueio de poros e redu??o de permeabilidade ? fortemente influenciado pelas distribui??es iniciais de tamanho de poros e de part?culas. Esta caracter?stica foi observada mesmo quando diferentes distribui??es iniciais de tamanho de poros e de part?culas com um mesmo tamanho m?dio de part?culas e de poros foi considerado. Finalmente, um modelo matem?tico para a previs?o da permeabilidade equivalente em meios porosos durante a reten??o de part?culas (e bloqueio de poros) foi proposto e as solu??es obtidas foram aplicadas para o estudo do decl?nio da permeabilidade em diferentes cen?rios / 2020-01-01
10

Investigation into submicrometer particle and gaseous emissions from airport ground running procedures

Mazaheri, Mandana January 2009 (has links)
Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Page generated in 0.1654 seconds