• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 13
  • 11
  • 6
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 168
  • 168
  • 39
  • 36
  • 36
  • 24
  • 23
  • 23
  • 21
  • 21
  • 19
  • 19
  • 18
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle tracking in a lab-scale conical fluidized bed dryer

Khanna, Pankaj 05 June 2008
Conical fluidized bed dryers are widely used in the pharmaceutical industry due to their high heat and mass transfer characteristics. Despite their widespread use, very little is known about the hydrodynamics of conical fluidized bed dryers. Wet pharmaceutical granule has high moisture content and wide particle size distribution (PSD), which can lead to poor mixing and non uniform drying. Uneven moisture content in the final product can adversely affect the quality and shelf life of these high value drugs. Previous studies on the conical fluidized bed dryers focused on the study of the gas phase, however motion of particulate phase has never been studied. Particle tracking is an important tool to study the motion of the particulate phase. Two particle tracking techniques were developed and used to study the motion of the particulate phase in a conical fluidized bed dryer. The first technique was radioactive particle tracking (RPT) which was developed at the University of Saskatchewan laboratory for a vessel having conical geometry. Experiments were conducted using dry pharmaceutical granule and during the actual drying of wet pharmaceutical granule. Two radioactive tracers of different sizes (1.6 to 2.6 mm) were tracked in each set of experiments to determine the effect of particle size on particle motion and particle mixing. Superficial gas velocities of 1, 1.5, 2 and 2.5m/s were used in dry bed studies to quantify the effect of superficial gas velocity. The second particle tracking technique was developed at the labs of Merck Frosst Canada Inc. Movies were captured using a high speed video camera coupled to a borescope and then analyzed off-line using image analysis software.Three powders having mean particle diameters of 774, 468 and 200 microns were used. Experiments were conducted at superficial gas velocities of 1.5, 2 and 3 m/s. <p>RPT revealed that there is a distinct circulation pattern of the particulate phase. Particles move upwards at high velocities near the centre of the bed and fall slowly near the walls. Furthermore, most of the gas flow is concentrated near the centre of the bed and the circulation pattern was observed at all the superficial gas velocities. Particle size of the tracer particle and PSD of the bed material had an appreciable impact on particle mixing with bigger particles exhibiting higher segregation tendencies than the smaller ones in the case of dry granule having a broad PSD. Particle segregation due to size difference was more pronounced at a superficial gas velocity of 1 m/s. However, segregation decreased with an increase in superficial gas velocity. During drying of wet granule, particle mixing and motion of the tracer particle was poor during the first 7 minutes of drying suggesting that most of the gas flow was concentrated near the centre of the bed. Particle mixing and average particle speeds increased considerably when the moisture content in the granule was less than 18 wt% suggesting a change in the hydrodynamics of the bed with the gas being more evenly distributed throughout the bed. Image analysis of high speed movies also suggested that a dilute region existed at the center of the bed. These observations were in agreement with the observations made by RPT.
2

Particle tracking in a lab-scale conical fluidized bed dryer

Khanna, Pankaj 05 June 2008 (has links)
Conical fluidized bed dryers are widely used in the pharmaceutical industry due to their high heat and mass transfer characteristics. Despite their widespread use, very little is known about the hydrodynamics of conical fluidized bed dryers. Wet pharmaceutical granule has high moisture content and wide particle size distribution (PSD), which can lead to poor mixing and non uniform drying. Uneven moisture content in the final product can adversely affect the quality and shelf life of these high value drugs. Previous studies on the conical fluidized bed dryers focused on the study of the gas phase, however motion of particulate phase has never been studied. Particle tracking is an important tool to study the motion of the particulate phase. Two particle tracking techniques were developed and used to study the motion of the particulate phase in a conical fluidized bed dryer. The first technique was radioactive particle tracking (RPT) which was developed at the University of Saskatchewan laboratory for a vessel having conical geometry. Experiments were conducted using dry pharmaceutical granule and during the actual drying of wet pharmaceutical granule. Two radioactive tracers of different sizes (1.6 to 2.6 mm) were tracked in each set of experiments to determine the effect of particle size on particle motion and particle mixing. Superficial gas velocities of 1, 1.5, 2 and 2.5m/s were used in dry bed studies to quantify the effect of superficial gas velocity. The second particle tracking technique was developed at the labs of Merck Frosst Canada Inc. Movies were captured using a high speed video camera coupled to a borescope and then analyzed off-line using image analysis software.Three powders having mean particle diameters of 774, 468 and 200 microns were used. Experiments were conducted at superficial gas velocities of 1.5, 2 and 3 m/s. <p>RPT revealed that there is a distinct circulation pattern of the particulate phase. Particles move upwards at high velocities near the centre of the bed and fall slowly near the walls. Furthermore, most of the gas flow is concentrated near the centre of the bed and the circulation pattern was observed at all the superficial gas velocities. Particle size of the tracer particle and PSD of the bed material had an appreciable impact on particle mixing with bigger particles exhibiting higher segregation tendencies than the smaller ones in the case of dry granule having a broad PSD. Particle segregation due to size difference was more pronounced at a superficial gas velocity of 1 m/s. However, segregation decreased with an increase in superficial gas velocity. During drying of wet granule, particle mixing and motion of the tracer particle was poor during the first 7 minutes of drying suggesting that most of the gas flow was concentrated near the centre of the bed. Particle mixing and average particle speeds increased considerably when the moisture content in the granule was less than 18 wt% suggesting a change in the hydrodynamics of the bed with the gas being more evenly distributed throughout the bed. Image analysis of high speed movies also suggested that a dilute region existed at the center of the bed. These observations were in agreement with the observations made by RPT.
3

3D-flow measurement by stereo imaging

Engelmann, Dirk. Unknown Date (has links) (PDF)
University, Diss., 2000--Heidelberg.
4

The use of fractional Brownian motion in the modelling of the dispersion of contaminants in fluids

Qu, Bo January 1999 (has links)
No description available.
5

Three-Dimensional Velocity Measurement Reconstruction for a Rod Bundle Array using Matched Refractive Index Particle Tracking Velocimetry

Reyes, Denny L 16 December 2013 (has links)
In a pressurized water reactor (PWR), pressurized water flows over fuel rods containing radioactive uranium. Potential failure of these nuclear fuel rods is a primary concern, as fuel rod failure typically results in power generation losses and reactor downtime. Thermal parameters such as critical heat flux have traditionally been utilized as performance metrics to ensure that the reactor core remains stable even during failure events. Recently, fuel leaking events have occurred which have resulted in excess debris buildup on fuel rods and fuel grid array mixing devices. Understanding the flow field surrounding these nuclear fuel rods is critical in predicting where crud could deposit. Although CFD simulations have been conducted to characterize the fluid flow around fuel rod bundles, limited experimental data characterizing the mechanics of this fluid flow exists in the current literature. This study will present experimental data collected detailing the fluid flow around a rod bundle geometry using a novel matched refractive index particle tracking velocimetry (PTV) technique over a 3D volume cross section of a prototypical nuclear fuel rod bundle. Velocimetry tracking will be performed in order to characterize the mechanics of the fluid flow. Using optical distortion mitigation techniques and various image processing methods, data from multiple cameras was used to assemble 3-dimensional velocity information of a turbulent fluid region. Results are compared to the solution of a k-epsilon unsteady RANS numerical simulation.
6

Shallow flow turbulence: an experimental study

Veale, William January 2005 (has links)
A particle tracking velocimetry (PTV) system is used to investigate the turbulent properties at the free surface of shallow shear flows and a shallow vortex street (VS) wake flow. The resolution of the PTV system enables information to be gathered regarding the large-scale turbulent structure of these flows, and also enables analysis to proceed in both the temporal and spatial domains. Statistical tools such as the probability density function (PDF), autocorrelation and power spectral density (PSD) are utilised to characterise the turbulent properties at the flow surface. Two supercritical flows and one subcritical shallow shear flow are analysed. Taylor's frozen turbulence hypothesis is shown to be valid for these flows, and the integral length scales indicate that 2D isotropic structures with scales larger than the flow depth are present at the free surface. Such large-scale structures at the free surface are consistent with observations from dye visualisation experiments and with "spiral eddies" identified by Kumar, et al (1998). The longitudinal extent of near and intermediate wake fields for the shallow VS wake flow is well defined by the integral wake length scale specified by v.Carmer (2005). The near wake region is characterised by high rates of exchange between the mean flow and large-scale 2D coherent structures (2DCS). In the intermediate field, the rate of decay of the turbulent stress components greatly diminishes as the 2DCS are stabilised and dissipated under the action of bed friction. Multiple peaks are observed in the power spectral density of the turbulent fluctuations. The periodic shedding of 2DCS behind the circular cylinder is characterised by an energy peak at a Strouhal number of 0.21, and further energy peaks are observed in the near-wake region. The PSD estimates are consistent with the findings of v.Carmer (2005) in which a -5/3 decay law to high frequencies is observed, and no evidence of an inverse energy cascade is present.
7

Ein miniaturisiertes Endoskop-Stereomesssystem zur Strömungsvisualisierung in Kiesbetten

Janßen, Christian. January 2001 (has links)
Heidelberg, Univ., Diplomarb., 2000.
8

Force Propagation in Mammalian Cell Systems and the Relevance of the Mechanically Integrated Cell

Armiger, Travis J. 01 May 2018 (has links)
Mammalian cells are known to respond to both extra- and intra- cellular forces as well as the physical properties of the surrounding tissue. There is increasing evidence to support the fundamental role of force, applied to or generated within cells, in maintaining proper tissue function. The mechanical integration from the exterior of a cell to the interior of the nucleus is crucial for cellular sensing of, and response to, the physical environment. Further, misregulation of this mechanosensitive ability can lead to the development or propagation of many diseases such as cancers, cardiovascular diseases, and tissue fibrosis. In this thesis, we investigate the role of various proteins in regulating the mechanical properties of mammalian cells. We also develop techniques to examine the propagation of forces through cells and multicell systems with the aim of elucidating critical biophysical factors involved in regulating cell function. The idea that the genome can be regulated through changes in forces applied to cells or changes in the propagation of forces through a cell, (i.e. mechanotransduction) is becoming widely accepted. The complex interplay between biochemical and biophysical mechanisms that ultimately control mechanotransduction are beginning to be uncovered; however, a true understanding of this remarkable cellular process has not yet been achieved. By investigating multiple factors which impact mechanosensitivity (such as protein expression, cell-cell and cell-environment connections, cell generated contractions, and physical connections through the cellular interior), we aim to further the understanding of potential pathways of mechanotransduction. Through novel studies and technological advances, the field of cellular biomechanics will continue to grow as we hope to uncover the physical mechanisms that regulate cell function or lead to disease.
9

Développement d'une technique de vélocimétrie laser en trois dimensions par suivi de particules basée sur le principe de défocalisation et son application autour d'obstacles en aval d'une grille. / Development and application of a time resolved 3D particle velocimetry technique around obstacles using defocus concept downstream a spacer grid

Baudoin, Raphael 17 December 2015 (has links)
Dans le cadre du design des assemblages combustibles, les écoulements turbulents induits par les grilles de maintien provoquent de fortes fluctuations de pression dues aux niveaux de vitesses du fluide induisant la vibration des crayons combustibles. Or ces vibrations sont une source de vieillissement accéléré et d’usure prématurée des assemblages combustibles dont l’origine convient d’être mieux analysée.Dans cette l'optique, des simulations numériques ont été utilisées pour prédire les niveaux de vitesses transverses ainsi que le niveau de turbulence en aval de la grille. Cependant, les codes CFD doivent être validés avec des mesures expérimentales conduisant ainsi à une meilleure compréhension des structures mis en jeu dans le processus de mélange. Or la caractéristique de ce type d'écoulement repose sur son caractère tridimensionnel entre les faisceaux de crayons où l'accès optique est limité et à l'heure actuelle, aucune mesure de vitesse 3D n'a été réalisée. C'est pourquoi nous nous proposons de présenter dans cette étude l'application d'une technique de mesure 3D résolue en temps dans une boucle hydraulique transparente. L’approche consiste à utiliser une stratégie de suivi, dans lequel des particules traceuses individuelles sont d'abord détectées dans l’écoulement et ensuite suivies dans le temps – PTV 3D.Cette thèse présente les résultats obtenus dans une veine d’essais hydraulique en utilisant une approche de suivi à l’aide de deux caméras. Dans un premier temps, une nouvelle extension de la technique de défocalisation permettant de récupérer les positions des particules dans le temps avec une caméra est présentée et la méthodologie pour récupérer les déplacements individuels est décrite. Des cas d’application et de validation de la technique sont présentés afin de mieux quantifier les erreurs de mesures. Ensuite, la boucle hydraulique est introduite et son écoulement caractérisé par des techniques établies de mesure de vitesse. Finalement, les mesures 3D à deux caméras sont réalisées et discutées. / In order to validate the numerical simulation of the mixing phenomena downstream a spacer grid in the reactor core, reaching the 3rd velocity component through experimental studies is of major importance since mechanical structures responses are linked to transverse velocities. Nevertheless the main difficulty relies on applying a non-intrusive velocimetry technique around obstacles composed of a vertical set of rods. So far only 1D and 2D temporal studies have been performed.Hence, numerical methods have been widely used to predict correctly those transverse velocities and the turbulence level downstream the grid. However, CFD codes are to be validated with experimental measurements leading to a better understanding of the detailed flow structure in the mixing process. Therefore we propose to present in this study the application of a 3D time resolved velocity measurement technique to a hydraulic test facility. The approach is to use a tracking strategy, in which individual particles are first detected then followed in time - 3D time resolved Particle Tracking Velocimetry.This PhD Thesis presents results obtained in a hydraulic test section using a tracking based approach with two cameras. At first, a new extension of the defocussing technique to recover particles location in time with one camera is presented and the methodology o get individual velocity vector is then described. Applications and validations of the technique in dedicated flows allow to determinate and quantify measurement uncertainties. Then the hydraulic test section is introduced together with preliminary flow characterization using Laser Doppler Velocimetry or 2D time resolved PIV analysis. Finally, two cameras measurements are reported and post-processing techniques are discussed.
10

Simulating Coral Reef Connectivity in the Southern Red Sea

Wang, Yixin 05 1900 (has links)
Connectivity is an important component of coral reef studies for its role in the enhancement of ecosystem resilience. Previous genetic structure and physical circulation studies in the Red Sea reveal a homogeneity within the coral reef complexes in the central and northern parts of the basin. Yet, genetic isolation and relatively low connectivity has been observed in the southern Red Sea. Raitsos et al. (2017) recently hypothesized that coral reefs in the southern Red Sea are more connected with regions outside the basin, rather than with the central and northern Red Sea. Using a physical circulation approach based on a 3-D backward particle tracking simulation, we further investigate this hypothesis. A long-term (> 10 years), very high resolution (1km) MITgcm simulation is used to provide detailed information on velocity in the complex coastal regions of the Red Sea and the adjacent narrow Bab-El-Mandeb Strait. The particle tracking simulation results support the initial hypothesis that the coastal regions in the southern Red Sea exhibit a consistently higher connectivity with the regions outside the Bab-El-Mandeb Strait, than with the central and northern Red Sea. Substantially high levels of connectivity, facilitated by the circulation and eddies, is observed with the coastal regions in the Gulf of Aden. A strong seasonality in connectivity, related to the monsoon-driven circulation, is also evident with the regions outside of the Red Sea. The winter surface intrusion plays a leading role in transporting the particles from the Gulf of Aden and the Indian Ocean into the Red Sea, while the summer subsurface intrusion also supports the transport of particles into the Red Sea in the intermediate layer. In addition, the connectivity with the central and northern Red Sea is more affected by the intensity of the eddies. Evidence also suggests that potential connectivity exists between the coastal southern Red Sea and the coasts of Oman, Socotra, Somalia, Kenya, Tanzania and the north coast of the Madagascar.

Page generated in 0.0727 seconds