Spelling suggestions: "subject:"particle's method"" "subject:"particle.is method""
1 |
An Elastic Constitutive Model of Spacetime and its ApplicationsTenev, Tichomir G 14 December 2018 (has links)
We introduce an elastic constitutive model of gravity that enables the interpretation of cosmological observations in terms of established ideas from Solid Mechanics and multiscale modeling. The behavior of physical space is identified with that of a material-like medium called "cosmic fabric," which exhibits constitutive behavior. This cosmic fabric is a solid hyperplate that is broad in the three ordinary spatial dimensions and thin in a fourth hyperspatial dimension. Matter in space is treated as fabric inclusions that prescribe in-plane (three-dimensional) strain causing the transverse bending of the fabric into the fourth hyperspatial dimension. The linearized Einstein-Hilbert action, which governs the dynamics of physical space, is derived from postulating Hooke’s Law for the fabric, and the Schwarzschild metric is recovered from investigating matterabric interactions. At the continuum length scale, the Principle of Relativity is shown to apply for both moving and stationary observers alike, so that the fabric’s rest reference frame remains observationally indistinguishable at such a length scale. Within the Cosmic Fabric paradigm, the structural properties of space at different hierarchical length scales can be investigated using theoretical notions and computational tools from solid mechanics to address outstanding problems in cosmology and fundamental physics. For example, we propose and offer theoretical support for the "Inherent Structure Hypothesis", which states that the gravitational anomalies currently attributed to dark matter may in fact be manifestations of the inherent (undeformed) curvature of space. In addition, we develop a numerical framework wherein one can perform numerical "experiments" to investigate the implications of said hypothesis.
|
2 |
Massively Parallel, Fast Fourier Transforms and Particle-Mesh Methods / Massiv parallele schnelle Fourier-Transformationen und Teilchen-Gitter-MethodenPippig, Michael 08 March 2016 (has links) (PDF)
The present thesis provides a modularized view on the structure of fast numerical methods for computing Coulomb interactions between charged particles in three-dimensional space. Thereby, the common structure is given in terms of three self-contained algorithmic frameworks that are built on top of each other, namely fast Fourier transform (FFT), nonequispaced fast Fourier transform (NFFT) and NFFT based particle-mesh methods (P²NFFT). For each of these frameworks algorithmic enhancement and parallel implementations are presented with special emphasis on scalability up to hundreds of thousands of parallel processes.
In the context of FFT massively parallel algorithms are composed from hardware adaptive low level modules provided by the FFTW software library. The new algorithmic NFFT concepts include pruned NFFT, interlacing, analytic differentiation, and optimized deconvolution in Fourier space with respect to a mean square aliasing error. Enabled by these generalized concepts it is shown that NFFT provides a unified access to particle-mesh methods. Especially, mixed-periodic boundary conditions are handled in a consistent way and interlacing can be incorporated more efficiently. Heuristic approaches for parameter tuning are presented on the basis of thorough error estimates. / Die vorliegende Dissertation beschreibt einen modularisierten Blick auf die Struktur schneller numerischer Methoden für die Berechnung der Coulomb-Wechselwirkungen zwischen Ladungen im dreidimensionalen Raum. Die gemeinsame Struktur ist geprägt durch drei selbstständige und auf einander aufbauenden Algorithmen, nämlich der schnellen Fourier-Transformation (FFT), der nicht äquidistanten schnellen Fourier-Transformation (NFFT) und der NFFT-basierten Teilchen-Gitter-Methode (P²NFFT). Für jeden dieser Algorithmen werden Verbesserungen und parallele Implementierungen vorgestellt mit besonderem Augenmerk auf massiv paralleler Skalierbarkeit.
Im Kontext der FFT werden parallele Algorithmen aus den Hardware adaptiven Modulen der FFTW Softwarebibliothek zusammengesetzt. Die neuen NFFT-Konzepte beinhalten abgeschnittene NFFT, Versatz, analytische Differentiation und optimierte Entfaltung im Fourier-Raum bezüglich des mittleren quadratischen Aliasfehlers. Mit Hilfe dieser Verallgemeinerungen bietet die NFFT einen vereinheitlichten Zugang zu Teilchen-Gitter-Methoden. Insbesondere gemischt periodische Randbedingungen werden einheitlich behandelt und Versatz wird effizienter umgesetzt. Heuristiken für die Parameterwahl werden auf Basis sorgfältiger Fehlerabschätzungen angegeben.
|
3 |
Efficient Computation of Electrostatic Interactions in Particle Systems Based on Nonequispaced Fast Fourier TransformsNestler, Franziska 27 August 2018 (has links)
The present thesis is dedicated to the efficient computation of electrostatic interactions in particle systems, which is of great importance in the field of molecular dynamics simulations. In order to compute the therefor required physical quantities with only O(N log N) arithmetic operations, so called particle-mesh methods make use of the well-known Ewald summation approach and the fast Fourier transform (FFT). Typically, such methods are able to handle systems of point charges subject to periodic boundary conditions in all spatial directions. However, periodicity is not always desired in all three dimensions and, moreover, also interactions to dipoles play an important role in many applications.
Within the scope of the present work, we consider the particle-particle NFFT method (P²NFFT), a particle-mesh approach based on the fast Fourier transform for nonequispaced data (NFFT). An extension of this method for mixed periodic as well as open boundary conditions is presented. Furthermore, the method is appropriately modified in order to treat particle systems containing both charges and dipoles. Consequently, an efficient algorithm for mixed charge-dipole systems, that additionally allows a unified handling of various types of periodic boundary conditions, is presented for the first time. Appropriate error estimates as well as parameter tuning strategies are developed and verified by numerical examples. / Die vorliegende Arbeit widmet sich der Berechnung elektrostatischer Wechselwirkungen in Partikelsystemen, was beispielsweise im Bereich der molekulardynamischen Simulationen eine zentrale Rolle spielt. Um die dafür benötigten physikalischen Größen mit lediglich O(N log N) arithmetischen Operationen zu berechnen, nutzen sogenannte Teilchen-Gitter-Methoden die Ewald-Summation sowie die schnelle Fourier-Transformation (FFT). Typischerweise können derartige Verfahren Systeme von Punktladungen unter periodischen Randbedingungen in allen Raumrichtungen handhaben. Periodizität ist jedoch nicht immer bezüglich aller drei Dimensionen erwünscht. Des Weiteren spielen auch Wechselwirkungen zu Dipolen in vielen Anwendungen eine wichtige Rolle.
Zentraler Gegenstand dieser Arbeit ist die Partikel-Partikel-NFFT Methode (P²NFFT), ein Teilchen-Gitter-Verfahren, welches auf der schnellen Fouriertransformation für nichtäquidistante Daten (NFFT) basiert. Eine Erweiterung dieses Verfahrens auf gemischt periodische sowie offene Randbedingungen wird vorgestellt. Außerdem wird die Methode für die Behandlung von Partikelsystemen, in denen sowohl Ladungen als auch Dipole vorliegen, angepasst. Somit wird erstmalig ein effizienter Algorithmus für gemischte Ladungs-Dipol-Systeme präsentiert, der zusätzlich die Behandlung sämtlicher Arten von Randbedingungen mit einem einheitlichen Zugang erlaubt. Entsprechende Fehlerabschätzungen sowie Strategien für die Parameterwahl werden entwickelt und anhand numerischer Beispiele verifiziert.
|
4 |
Massively Parallel, Fast Fourier Transforms and Particle-Mesh Methods: Massiv parallele schnelle Fourier-Transformationen und Teilchen-Gitter-MethodenPippig, Michael 13 October 2015 (has links)
The present thesis provides a modularized view on the structure of fast numerical methods for computing Coulomb interactions between charged particles in three-dimensional space. Thereby, the common structure is given in terms of three self-contained algorithmic frameworks that are built on top of each other, namely fast Fourier transform (FFT), nonequispaced fast Fourier transform (NFFT) and NFFT based particle-mesh methods (P²NFFT). For each of these frameworks algorithmic enhancement and parallel implementations are presented with special emphasis on scalability up to hundreds of thousands of parallel processes.
In the context of FFT massively parallel algorithms are composed from hardware adaptive low level modules provided by the FFTW software library. The new algorithmic NFFT concepts include pruned NFFT, interlacing, analytic differentiation, and optimized deconvolution in Fourier space with respect to a mean square aliasing error. Enabled by these generalized concepts it is shown that NFFT provides a unified access to particle-mesh methods. Especially, mixed-periodic boundary conditions are handled in a consistent way and interlacing can be incorporated more efficiently. Heuristic approaches for parameter tuning are presented on the basis of thorough error estimates. / Die vorliegende Dissertation beschreibt einen modularisierten Blick auf die Struktur schneller numerischer Methoden für die Berechnung der Coulomb-Wechselwirkungen zwischen Ladungen im dreidimensionalen Raum. Die gemeinsame Struktur ist geprägt durch drei selbstständige und auf einander aufbauenden Algorithmen, nämlich der schnellen Fourier-Transformation (FFT), der nicht äquidistanten schnellen Fourier-Transformation (NFFT) und der NFFT-basierten Teilchen-Gitter-Methode (P²NFFT). Für jeden dieser Algorithmen werden Verbesserungen und parallele Implementierungen vorgestellt mit besonderem Augenmerk auf massiv paralleler Skalierbarkeit.
Im Kontext der FFT werden parallele Algorithmen aus den Hardware adaptiven Modulen der FFTW Softwarebibliothek zusammengesetzt. Die neuen NFFT-Konzepte beinhalten abgeschnittene NFFT, Versatz, analytische Differentiation und optimierte Entfaltung im Fourier-Raum bezüglich des mittleren quadratischen Aliasfehlers. Mit Hilfe dieser Verallgemeinerungen bietet die NFFT einen vereinheitlichten Zugang zu Teilchen-Gitter-Methoden. Insbesondere gemischt periodische Randbedingungen werden einheitlich behandelt und Versatz wird effizienter umgesetzt. Heuristiken für die Parameterwahl werden auf Basis sorgfältiger Fehlerabschätzungen angegeben.
|
Page generated in 0.0578 seconds