• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Melt electrospinning using Polycaprolactone (PCL) polymer for various applications: experimental and theoretical analysis

Ko, Junghyuk 23 December 2014 (has links)
This thesis presents a melt electrospinning technique to fabricate highly porous and controllable poly (ε-caprolactone) (PCL) microfibers for tissue engineering applications and rehabilitation applications. Electrospinning without solvents via melt methods may be an attractive approach to tissue engineering of cell constructs where solvent accumulation or toxicity is an issue. This method is also able to produce microfibers with controllable parameters. However, the fiber diameters resulting from melt electrospinning processes are relatively large when compared to the fibers from solution electrospinning. The typical microfiber diameter from melt electrospinning was reported to be approximately 0.1mm. In order to further develop the melt electrospinning technique, we focused on the design of a melt electrospinning setup based on numerical analysis using the Solidworks 2013 simulation package and practically established a melt electrospinning setup and thermal control system for accurate experiments. One of main purposes of this thesis is the build-up of mathematical modeling to control and predict the electrospun microfiber via a more intricate understanding of their parameters such as the nozzle diameter, applied voltage, distance between the nozzle and counter electrode, temperature, flow rate, linear transitional speed, among others. The model is composed of three parts: 1) melt electrospinning process modeling, 2) fibrous helix movement modeling, and 3) build-up of microfibers modeling. The melt electrospinning process model describes an electric field, the shape of jet’s continuously changing shape, and how the polymer melt is stretched into a Taylor cone and a straight jet. The fibrous helix movement model describes movement of electrospun microfibers influenced by Lorentz force, which moves along the helix pattern. Lastly, the build-up microfiber modeling describes the accumulation of the extruded microfibers on both flat and round counter electrodes based on the physical forces involved. These models are verified by experimental data from our own customized melt electrospinning setup. Moreover, the fabricated scaffolds are tested by seeding neural progenitors derived from murine R1 embryonic stem cell lines and it demonstrates the potential of scaffolds for tissue engineering applications. To increase cell attachment and proliferation, highly porous microfibers are fabricated by combination of melt electrospinning and particulate leaching technique. Finally, auxetic stretchable PCL force sensors are fabricated by melt electrospinning for hand rehabilitation. These stretchable sensors can be used to measure applied external loads or displacement and are also attachable to various substrates. We have attempted to apply the sensors to real human hand in order to prove their functionality. / Graduate / jko@me.uvic.ca

Page generated in 0.1 seconds