Spelling suggestions: "subject:"past band"" "subject:"pas band""
1 |
Analýza elektronických obvodů programem Mathcad / Analysis of the electronic circuits using Mathcad programŠimůnek, Martin January 2010 (has links)
The main idea of this thesis is a propose by designing filters in Mathcad program. This paper deals with a basic principle in filters design and these principles are implemented into the Mathcad program. In the introductory part is described aproximation which was used in Mathcad script. In the other parts of this project is described program which was created on designed filters.
|
2 |
Elastic Wave Propagation in Corrugated Wave GuidesBanerjee, Sourav January 2005 (has links)
Elastic Wave propagation in structures with irregular boundaries is studied by transforming the plates with irregular surfaces to sinusoidal wave-guides. Guided elastic wave in a two-dimensional periodically corrugated plate is studied analytically. The plate material is considered as homogeneous, isotropic and linearly elastic. In a periodically corrugated wave-guide, all possible spectral orders of wave numbers are considered. The dispersion equation is obtained by applying the traction free boundary conditions at the two surfaces. The analysis is carried out in the wave-number domain for both symmetric and anti-symmetric modes. Non-propagating 'stop bands' and propagating 'pass bands' are investigated. Experimental analyses with two different pairs of transducers are also performed and compared with the results from the mathematical analysis. Newly developed semi-analytical DPSM technique has been also adopted in this dissertation to model the ultrasonic field in sinusoidally corrugated plate. Distributed Point Source Method (DPSM) is gradually gaining popularity in the field of Non-Destructive Evaluation (NDE). DPSM can be used to calculate the ultrasonic field (pressure, velocity and displacement in a fluid or stress and displacement in a solid) generated by ultrasonic transducers. So far the technique has been used to model ultrasonic field in homogeneous or multilayered fluid structures. In this dissertation the method is extended to model the ultrasonic field generated in both fluid and solid media. The Prime objective of using DPSM technique in this dissertation is to model the ultrasonic field generated in the corrugated wave guide. This method has never been used to model ultrasonic field in solids. Development of stress and displacement Green's functions in solids are presented. In addition to the wave propagation problem in the sinusoidal wave guide, a few unsolved problems such as ultrasonic field generated by bounded acoustic beams in multilayered fluid structures, near a fluid-solid interface and in flat solid isotropic plates are also presented in this dissertation.
|
3 |
The Effects of Vocoding on Dialect and Gender PerceptionSmith, Zane Tanner 15 August 2018 (has links)
No description available.
|
4 |
Analysis of Vibration of 2-D Periodic Cellular StructuresJeong, Sang Min 19 May 2005 (has links)
The vibration of and wave propagation in periodic cellular structures
are analyzed. Cellular structures exhibit a number of desirable
multifunctional properties, which make them attractive in a variety of
engineering applications. These include ultra-light structures, thermal
and acoustic insulators, and impact amelioration systems, among others.
Cellular structures with deterministic architecture can be considered
as example of periodic structures. Periodic structures feature unique
wave propagation characteristics, whereby elastic waves propagate only
in specific frequency bands, known as "pass band", while they are
attenuated in all other frequency bands, known as "stop bands". Such
dynamic properties are here exploited to provide cellular structures
with the capability of behaving as directional, pass-band mechanical
filters, thus complementing their well documented multifunctional
characteristics.
This work presents a methodology for the analysis of the dynamic
behavior of periodic cellular structures, which allows the evaluation
of location and spectral width of propagation and attenuation regions.
The filtering characteristics are tested and demonstrated for
structures of various geometry and topology, including cylindrical
grid-like structures, Kagom and eacute; and tetrhedral truss core lattices.
Experimental investigations is done on a 2-D lattice manufactured out
of aluminum. The complete wave field of the specimen at various
frequencies is measured using a Scanning Laser Doppler Vibrometer
(SLDV). Experimental results show good agreement with the methodology
and computational tools developed in this work. The results demonstrate
how wave propagation characteristics are defined by cell geometry and
configuration. Numerical and experimental results show the potential of
periodic cellular structures as mechanical filters and/or isolators of
vibrations.
|
5 |
Pseudo-diferenční kmitočtové filtry vyššího řádu / Pseudo-differential higher-order frequency filtersJeleček, Jiří January 2019 (has links)
This Master's thesis deals with pseudo-differential frequency higher order filters working in voltage mode. The thesis deals with the description of frequency filters, their types and applications. Follows an analysis of differential and pseudo-differential transmissions. Next part contains a description of used active elements (conveyors) at thesis (CCII, DVCC, DDCC, UCC). In the last part the thesis is devoted to the own design of the pseudo-differential filter. Design functionality is verified by experimental simulation.
|
6 |
Koexistence mobilních komunikačních systémů WLAN a Bluetooth / WLAN and Bluetooth Systems CoexistenceMikulka, Jan January 2009 (has links)
The dissertation thesis deals with a WLAN and Bluetooth systems coexistence. A Bluetooth standard works in an unlicensed frequency band 2,402 – 2,480 GHz. This frequency band is also used by an IEEE 802.11b/g standard (Wi-Fi) which is the most extended representative of WLAN networks. Because Bluetooth and Wi-Fi systems operate in the same frequency band, a mutual signal degradation may appear, when devices are collocated in the same area. In the first part of the dissertation thesis there is a brief summary of 2,402 - 2,480 GHz frequency band regulations and its usage. There are described physical layers of Bluetooth and IEEE 802.11b/g standards and techniques used for a collision avoidance. The main part of the dissertation thesis deals with a development of a new Matlab Simulink model for investigations of the Bluetooth and Wi-Fi standards coexistence. Physical layer models and results of the coexistence simulations are verified by a measurement in real conditions with a help of a modern vector signal analyzer. The results are presented in a graphical form and a brief summary is attached at the end of each chapter. Corresponding tables of simulated and measured values are available in the enclosed CD.
|
Page generated in 0.066 seconds