• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metallic yielding devices for passive dissipation of seismic energy

Mr Wing Ki Ricky Chan Unknown Date (has links)
No description available.
2

Metallic yielding devices for passive dissipation of seismic energy

Mr Wing Ki Ricky Chan Unknown Date (has links)
No description available.
3

Use of Permanent Magnets to Improve the Seismic Behavior of Light-Framed Structures

Patel, Hardik D. 17 June 2005 (has links)
Light-framed wood structures generally have satisfied the life safety objective of the current seismic design approach. The main source of energy dissipation in such structures is the inelastic behavior of the connectors connecting framing and sheathing elements. Wood framed structures when subjected to strong ground excitations experience structural and non-structural damage which may incur large repair/replacement costs or may even render the structure out of service. Thus, it is very important to apply techniques to mitigate the seismic response of the light-framed structures and avoid large monetary losses. It is proposed to use commercially available permanent magnets, incorporated in the form of passive friction dampers, to dissipate a part of input energy induced due to strong ground motions, thereby reducing the inelastic energy dissipation demand of the lateral load resisting system. The force of attraction between the permanent magnet and ferromagnetic material like steel was utilized to produce the required friction resistance. A sliding wall configuration consisting of flexible permanent magnets and steel plates sandwiched between the plywood sheets was analyzed for its effectiveness in mitigating the response of a two story wood shear wall structure. The structural analysis program SAP2000 was used to perform nonlinear dynamic analysis of the finite element models generated using the meshing algorithms incorporated into 'WoodFrameMesh'. Nonlinear link elements available in SAP2000 were used to model the friction between the flexible magnet sheet and the steel plate. The effects of various modeling parameters on the solution of the nonlinear analysis were studied so as to arrive at appropriate values to represent the friction problem. Also the friction damped structure was analyzed to study its forced and free vibration characteristics. Further, the responses of the friction damped structure and the undamped structure were compared when subjected to different ground accelerations. The response of the friction damped structure was also compared to that of the structure in which the proposed friction dampers were replaced by normal shear walls. A huge reduction in the response of the friction damped structure was observed when compared to the response of the undamped structure. The friction damped structure was also analyzed for different values of modal damping ratios. Over all about 60-80% of the input energy was dissipated by friction damping in all the cases. The slip resistance of a flexible permanent magnet sheet was also verified in the laboratory. Above all the magnetic properties of commercially available permanent magnets and the effects of strong permanent magnets on human health were also studied. / Master of Science
4

Development, Analysis and Testing of a Hybrid Passive Control Device for Seismic Protection of Framed Structures

Marshall, Justin D. 09 January 2009 (has links)
A new seismic protection strategy called the hybrid passive control device (HPCD) has been developed which combines typical passive energy dissipation devices. It consists of a high damping rubber (HDR) sandwich damper in series with a buckling restrained brace (BRB). The HPCD provides energy dissipation at small deformations without significantly decreasing the structural period. The significant energy dissipation capacity of a BRB is provided for significant seismic events in the second phase. The transition between these two phases consists of an increasing stiffness as the device transitions from rubber damper to BRB. The HPCD reduces deformations, forces and accelerations from seismic events. The hyperelastic or stiffening effect also prevents resonant build-up and aids in collapse prevention due to p-delta effects. The first phase of this work included characterization of high damping rubber compounds and analytical modeling of the HPCD concept. Experimental testing was completed to measure both the static and dynamic material properties of six different rubber compounds. The two most promising rubber compounds were selected for possible inclusion in the device. Analytical models of these selected materials were developed for nonlinear solid finite element analysis. The most promising configuration of the device was selected from several options. The selected configuration was analyzed using the commercial finite element program ABAQUS. These models were used to confirm the validity of the theoretical behavior of the device. Additionally these tests were used to determine which of the rubber compounds performed best. Experimental testing of a half-scale HPCD specimen was carried out in the Structures and Materials Research Laboratory at Virginia Tech. The prototype was tested under cyclic and static loads. The experimental tests confirmed the potential of the hybrid device while highlighting minor issues with the design of the prototype. The final component in the research was an analytical study using hybrid devices in a 9-story steel moment frame structure. The devices were found to provide improved response over a special steel moment frame and a moment frame combined with a buckling restrained brace frame. / Ph. D.

Page generated in 0.1335 seconds