• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 65
  • 26
  • 26
  • 21
  • 16
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 267
  • 61
  • 57
  • 47
  • 39
  • 37
  • 35
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electrodeposition of multi-valent metal oxides at 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid - carbon paste electrode

Qwesha, Sibusiso January 2012 (has links)
>Magister Scientiae - MSc / A study on carbon paste electrode (CPE) materials containing 1-methyl-3-octylimidazolium bis (trifluoromethylsulfonyl) imide [MOIM[Tƒ2N] – a hydrophobic room temperature ionic liquid (IL) - is reported. CPEs with (a) the IL as the only binder (ILCPE) and (b) 1:1 (v/v) IL: paraffin mixture as the binder (ILPCPE) were prepared, characterized, and applied to the electrodeposition of films of multivalent transition metal oxides (MV-TMO) from five precursor ions (Fe2+, Mn2+, Cu2+, Co2+, Ce4+) in aq. KCl. Cyclic voltammetry (CV) showed a potential window of +1.5 V to -1.8 V regardless of the electrode type, including the traditional paraffin CP electrode (PCPE). However, the IL increased the background current by 100-folds relative to paraffin. The electrochemical impedance spectroscopy (EIS) of ILPCPE in aq. KCl (0.1M) revealed two phase angle maxima in contrast with the single maxima for PCPE and ILCP. The study also included the CV and EIS investigation of the electrode kinetics of the Fe(CN)6 3-/4 redox system at these electrodes. The electrodeposition of Fe2+, Co2+, and Mn2+ possibly in the form of the MV-TMOs FexOy, CoxOy, and MnxOy, respectively, onto the electrodes was confirmed by the observation of new and stable cathodic and anodic peaks in a fresh precursor ion –free medium. CVs of H2O2 as a redox probe supported the same conclusions. Both ATR-FTIR spectra and SEM image of surface samples confirmed the formation of electrodeposited films. This study demonstrated that the use of this hydrophobic IL alone or in combination with paraffin as a binder gives viable alternative CPE materials with better performance for the electrodeposition of MV-TMOs films than the paraffin CPE. Thus, in combination with the easy preparation methods and physical “morpheability” in to any shape, these CPEs are potentially more useful in electrochemical technologies based on high surface-area MV-TMO films in general, and MnxOy films in particular.
22

Reactivity of Cemented Paste Backfill

Aldhafeeri, Zaid 13 September 2018 (has links)
Mining has been one of the main industries in the course of the development of human civilization and economies of various nations. However, every industry has issues, and one of the problems the mining industry has faced is the management of waste, especially sulphide-bearing tailings, which are considered to be a global environmental problem. This issue puts pressure on the mining industry to seek alternative approaches for tailings management. Among the several different types of methods used, cemented paste backfilling is one of the technologies that offers good management practices for the disposal of tailings in underground mines worldwide. Cemented paste backfill (CPB) is a cementitious composite made from a mixture of mine tailings, water and binder. This technology offers several advantages, such as improving the production and safety conditions of underground mines. Among these advantages, CPB is a promising solution for the management of sulphidic tailings, which are considered to be reactive materials (i.e., not chemically stable in an atmospheric condition) and the main source of acid mine drainage, which constitutes a serious environmental challenge faced by mining companies worldwide. Such tailings, if they come into direct contact with atmospheric elements (mainly oxygen and water), face oxidation of their sulphidic minerals, thus causing the release of acidic drainage (i.e., acid mine drainage) and several types of heavy metals into surrounding water bodies and land. Therefore, the reactivity of sulphidic tailings with and without cement content can be considered as a key indicator of the environmental behavior and durability performance of CPB systems. For a better understanding of the reactivity, it is important to investigate the influencing factors. In this research, several influencing factors are experimentally studied by conducting oxygen consumption tests on different sulphidic CPB mixtures as well as their tailings under different operational and environmental conditions. These factors include time, curing temperature, initial sulphate content, curing stress, mechanical damage, binder type and content, and the addition of mineral admixtures. In addition, several microstructural techniques (e.g., x-ray diffraction and scanning electron microscopy) are applied in order to understand the changes in the CPB matrices and identify newly formed products. The results reveal that the reactivity of CPB is affected by several factors (e.g., curing time, initial sulphate content, ageing, curing and atmospheric temperature, binder type and content, vertical curing stress, filling strategy, hydration and drainage, etc.), either alone or in combination. These factors can affect reactivity either positively or negatively. It is observed that CPB reactivity decreases with increasing curing time, temperature (i.e., curing and atmospheric temperatures), curing stress, binder content, the addition of mineral admixtures, degree of saturation, and the binder hydration process, whereas reactivity increases with increases in sulphide minerals (e.g., pyrite), initial sulphate content, mechanical damage, and with decreased degrees of saturation and binder content. The effect of sulphate on the reactivity of CPB is based on the initial sulphate content as well as curing time and temperature. It is concluded that the reactivity of CPB systems is time- and temperature-dependent with respect to other factors. Also, binders play a significant role in lowering CPB reactivity due to their respective hydration processes.
23

The Use of Paste Backfill to Increase Long-Term Mine Stability and Coal Extraction: A theoretical study for Illinois Basin room and pillar coal mines

Benton, Donovan 01 August 2013 (has links)
Research and experience using various types of mine backfill - hydraulic, rock, paste, and blended - has indicated several benefits to the mining industry. Backfill is a general term that refers to any waste material that is placed into underground mine workings. Paste backfill in particular has shown environmental and economic benefits. Paste fill is generally produced from total mine tailings, meaning that it can include waste rock, sands, and clay-sized particles. It also contains no free water, meaning that water will not flow freely through it after placement causing post filling shrinkage. These characteristics make it the most environmentally "friendly" backfill option currently available. In addition, paste backfill is non-segregating and stackable, containing about 80% solids by weight, and having the consistency of medium-slump concrete, containing a cementitious content. These characteristics make paste backfill the best option for post-mining ground control in room and pillar coal mines. There are two main bodies of research regarding paste backfill. The first studies its composition, application, and performance in past and present mining environments; the second studies its theoretical application for both mine support and waste disposal. While this research has provided much for the burgeoning technology of paste backfill, little has been done to investigate its economic application to the industry in room and pillar coal mines. At present, surface disposal of waste is generally cheaper than underground disposal. The goal of this thesis is to initiate discourse investigating the hypothesis that paste backfill may be used in such a way as to allow for increased coal extraction, which may then not only cover the additional costs of underground waste disposal, but potentially increase overall mine profitability. Inherent to this discourse will be a consideration of the following issues: * The potential for increased extraction. * The preservation of long-term pillar stability. * Improved floor stability. * Diminished environmental impact at surface. * The cost benefits associated with all of the above. Data from three Illinois Basin room and pillar coal mines were collected and used for this thesis. Theoretical computer modeling using LaModel and Phase2, empirical analysis of mine stability, physical testing using simulated paste backfill models, and comparative cost analyses considering current and hypothetical mining scenarios were conducted to identify these potential benefits and their consequences, both theoretical and practical.
24

Untersuchung des in vivo Einwachsverhaltens von Zementgranulaten und -pasten aus resorbierbaren Calcium-dotierten Magnesiumphosphat-Phasen / Investigating the in vivo ingrowth behavior of cement granules and pastes from resorbable calcium-doped magnesium phosphate phases

Kreczy, Dorothea January 2020 (has links) (PDF)
In der vorliegenden Arbeit wurden unterschiedliche zementbasierte Knochenersatzmaterialien hinsichtlich ihres Potentials zur Behandlung knöcherner Defekte in vivo untersucht. Zwei verschiedene Calcium-dotierten Magnesiumphosphat Zementformulierungen (CMPC) wurden mit einem Referenzmaterial aus Calciumphosphat Zement (CPC) verglichen. Dazu wurden auf Basis von CMPC präfabrizierte, injizierbare Pasten bzw. sphärische Granulate hergestellt und anhand von orthotopen, potenziell kraftbelasteten Defekten in Kaninchenfemora getestet. Zentrales Ziel hierbei war es, herauszufinden, wie sich die Materialien in Defektsituationen mit Hartgewebekontakt biologisch verhalten und degradieren bzw. in Knochen umbauen. Nach einer Liegedauer von 6 bzw. 12 Wochen wurden die Knochenneubildung und die Degradation der Materialien mittels Histomorphometrie analysiert. Alle Materialien waren biokompatibel und führten zur Bildung von neuem Knochen. Der CMPC-Zement zeigte im Vergleich zu CPC einen beschleunigten Abbau, während sich am Referenzmaterial mehr mineralisierter Knochen bildete. Die untersuchten Calcium-dotierten Struvit-bildenden Magnesiumphosphatzemente erwiesen sich als biokompatibel, gut resorbierbar und stellen mit ihrer Fähigkeit zur Knochenbildung ein vielversprechendes Knochenersatzmaterial dar. / Two different bone replacement materials where tested for their in vivo bone regeneration capacity. Two different calcium-magnesia-phosphate cement (CMPC) formulations in form of premixed, injectable oil-based cement paste and granulates and a reference calcium-phosphate cement (CPC) cement were implanted into semi-load bearing femoral drill hole in rabbits. After 6 or 12 weeks the implants were retrieved, and cement degradation and new bone formation was analyzed by histomorphometry. The result showed that all cements where biocompatible, triggered the formation of and were surrounded by new bone. The CMPC cement showed an accelerated degradation compared to CPC, while more new bone was built on the CPC materials. The calcium-doped magnesium phosphate cement materials exhibited regeneration of the host bone and demonstrated enhanced degradability in vivo, which makes them a promising bone replacement material.
25

The antibacterial effect of a radiopaque double antibiotic paste against both an established multispecies and a single enterococcus faecalis biofilm

Haslam, Bryce S. January 2019 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / For regenerative endodontic procedures (REPs) to be successful an elimination of bacteria from the root canal system must be accomplished. Many different medicaments with antibacterial properties have been used to obtain complete disinfection. Double antibiotic paste (DAP) containing a mixture of ciprofloxacin and metronidazole has been shown to be a promising intracanal medicament. The addition of a radiopaque filler such as zirconium oxide to DAP may affect the antibacterial properties of DAP as well as allow precise placement and radiographic visualization of its position in the canal system. The aim of the proposed study was to evaluate the direct antibacterial properties of zirconium oxide radiopacifier combined with DAP (RoDAP) against a multispecies biofilm from a bacterial isolate from an infected immature tooth with a necrotic pulp and a known single species biofilm. 4x4 mm radicular dentin specimens (n = 112) obtained from human extracted teeth were used prepared and sterilized prior to use. A multispecies clinical bacterial isolate from an immature tooth with a necrotic pulp and a single species Enterococcus faecalis isolate were obtained. These bacterial isolates were used to inoculate dentin slabs and grown for 3 weeks. The dentin slabs were treated for 1 week with 1.0-mg/mL and 10- mg/mL RoDAP, 1.0-mg/mL DAP, and two placebo pastes consisting of methyl cellulose (MC) and methyl cellulose combined with zirconium oxide (RoMC), respectively, as well as two no-treatment controls. Following treatment, the grown biofilm was detached and spiral plated. The plated biofilm cells were cultured for 24 hours and each group examined using a colony counter to determine bacterial numbers (CFUs/mL). Data analysis, using a 5.0-percent significance level was conducted using one-way ANOVA followed by pair-wise group comparisons. Both 1.0-mg/mL and 10 mg/mL RoDAP demonstrated significant antibacterial effects against bacterial isolates from an immature tooth with a necrotic pulp as well as an E. faecalis isolate. The precise application of RoDAP confirmed radiographically with its direct antibacterial properties may be beneficial for intracanal disinfection during REPs.
26

Titanium dioxide thick film printing paste for dye sensitized solar cell

Yu, Cheng-Lun January 2011 (has links)
No description available.
27

Effectiveness of Mi PasteTM, Mi Paste PlusTM, and Topex RenewTM in remineralization and visible reduction of white spot lesions after orthodontic treatment - a clinical study

Shell, Eric Radcliff 01 May 2012 (has links)
Introduction: Orthodontic treatment is meant to provide patients with stable occlusion and an esthetic smile, and often improves a patient's self-esteem. Unfortunately, and too often, an ideal orthodontic finish in terms of alignment and occlusion is tarnished by the appearance of white spot lesions on the facial surface of teeth after removing the fixed appliances. These white spots detract from the esthetics of a patient's smile. Purpose: The objective of this study was to evaluate the effectiveness of MI PasteTM (GC America, Alsip, Illinois), MI Paste PlusTM (GC America, Alsip, Illinois), and Topex RenewTM (Sultan Healthcare, Hackensack, NJ) in increasing remineralization and improving the esthetic appearance of white spot lesions in patients after treatment with fixed orthodontic appliances. In addition, at-home only versus in-office and at-home treatment protocols were evaluated. Methods and Materials: Thirty patients were enrolled in four treatment groups and a control group, with six patients in each group. The study lasted three months and results were analyzed with normal and QLF photographs. Results, Discussion, and Conclusion: Upon completion of this clinical study, the following conclusions can be drawn. First, the visible area and the fluorescence decrease of white spot lesions will both significantly lessen after orthodontic treatment regardless of products used, or even with a non-prescription fluoride toothpaste control. Second, there is some evidence that an at-home treatment protocol using Topex Renew, or a combination in-office and at-home treatment protocol with MI Paste Plus, may be more beneficial in reducing the appearance of white spot lesions after orthodontic treatment than other treatment protocols.
28

Design Methodology and Materials for Additive Manufacturing of Magnetic Components

Yan, Yi 11 April 2017 (has links)
Magnetic components such as inductors and transformers are generally the largest circuit elements in switch-mode power systems for controlling and processing electrical energy. To meet the demands of higher conversion efficiency and power density, there is a growing need to simplify the process of fabricating magnetics for better integration with other power electronics components. The potential benefits of additive manufacturing (AM), or more commonly known as three-dimensional (3D) printing technologies, include shorter lead times, mass customization, reduced parts count, more complex shapes, less material waste, and lower life-cycle energy usage—all of which are needed for manufacturing power magnetics. In this work, an AM technology for fabricating and integrating magnetic components, including the design of manufacturing methodology and the development of the feedstock material, was investigated. A process flow chart of additive manufacturing functional multi-material parts was developed and applied for the fabrication of magnetic components. One of the barriers preventing the application of 3D-printing in power magnetics manufacturing is the lack of compatible and efficient magnetic materials for the printer's feedstock. In this work, several magnetic-filled-benzocyclobutene (BCB) pastes curable below 250 degree C were formulated for a commercial multi-material extrusion-based 3D-printer to form the core part. Two magnetic fillers were used: round-shaped particles of permalloy, and flake-shaped particles of Metglas 2750M. To guide the formulation, 3D finite-element models of the composite, consisting of periodic unit cells of magnetic particles and flakes in the polymer-matrix, was constructed. Ansoft Maxwell was used to simulate magnetic properties of the composite. Based on the simulation results, the pastes consisted of 10 wt% of BCB and 90 wt% of magnetic fillers—the latter containing varying amounts of Metglas from 0 to 12.5 wt%. All the pastes displayed shear thinning behavior and were shown to be compatible with the AM platform. However, the viscoelastic behavior of the pastes did not exhibit solid-like behavior, instead requiring layer-by-layer drying to form a thick structure during printing. The key properties of the cured magnetic pastes were characterized. For example, bulk DC electrical resistivity approached 107 Ω⋅cm, and the relative permeability increased with Metglas addition, reaching a value of 26 at 12.5 wt%. However, the core loss data at 1 MHz and 5 MHz showed that the addition of Metglas flakes also increased core loss density. To demonstrate the feasibility of fabricating magnetic components via 3D-printing, several inductors of differing structural complexities (planar, toroid, and constant-flux inductors) were designed. An AM process for fabricating magnetic components by using as-prepared magnetic paste and a commercial nanosilver paste was developed and optimized. The properties of as-fabricated magnetic components, including inductance and DC winding resistance, were characterized to prove the feasibility of fabricating magnetic components via 3D-printing. The microstructures of the 3D-printed magnetic components were characterized by Scanning-electron-microscope (SEM). Results indicate that both the winding and core magnetic properties could be improved by adjusting the formulation and flow characteristics of the feed paste, by fine-tuning printer parameters (e.g., motor speed, extrusion rate, and nozzle size), and by updating the curing profile in the post-process. The main contributions of this study are listed below: 1. Developed a process flow chart for additive manufacturing of functional multi-material components. This methodology can be used as a general reference in any other research area targeting the utilization of AM technology. 2. Designed, formulated and characterized low-temperature curable magnetic pastes. The pastes are physically compatible with the additive manufacturing platform and have applications in the area of power electronics integration. 3. Provided an enhanced understanding of the core-loss mechanisms of soft magnetic materials and soft magnetic composites at high frequency applications. / Ph. D.
29

Dispenzní tisk tlustovrstvých past / The direct writing of thick film pastes

Ištvánek, Jan January 2010 (has links)
This work deals with the problem of the thick-film pastes and their printing. In the main chapter of this work, the realization of a workplace for thick-film pastes' printing is described. The construction of the realized plotter and the controlling electronics of the plotter is depicted in detail.In the following chapter, the console, through which the plotter is controlled via PC, and the CAD program, which serves for projecting of the motives printed, are described.In the final chapter of this work, the measured profiles of the paste printed for various settings of printing parameters and the photographs of the motives printed are stated.
30

Dispenzní tisk tlustovrstvých past / The direct writing of thick film pastes

Ištvánek, Jan January 2010 (has links)
This work deals with the problem of the thick-film pastes and their printing. In the main chapter of this work, the realization of a workplace for thick-film pastes' printing is described. The construction of the realized plotter and the controlling electronics of the plotter is depicted in detail.In the following chapter, the console, through which the plotter is controlled via PC, and the CAD program, which serves for projecting of the motives printed, are described.In the final chapter of this work, the measured profiles of the paste printed for various settings of printing parameters and the photographs of the motives printed are stated.

Page generated in 0.0585 seconds