Spelling suggestions: "subject:"path computational Element""
1 |
L'architecture Path Computation Element (PCE) pour les réseaux MPLS et son application à l'internet des objets / The Path Computation Element (PCE) for MPLS networks and its application to the Internet of Things (IoT)Vasseur, Jean-Philippe 18 January 2013 (has links)
Les réseaux Telecom sont désormais en charge du transport d’une large variété de trafic de types donnés, voix, vidéo et autres protocoles industriels réclamant des garantie de qualité de service strictes. L’ingénierie de trafic permet non seulement d’optimiser les ressources réseaux mais aussi de parvenir à garantir ces qualités de service exprimées en termes de délais dans le réseau, de gigue mais aussi de taux de disponibilité en présence de pannes de liens ou de nœuds. La technologie MPLS TE, basée sur la commutation de labels le long de chemins contraints a permis d’atteindre ces objectifs et fut déployée dans de nombreux réseaux. L’objectif de cette thèse est de proposer un nouveau modèle architectural nommé PCE, ainsi que des protocoles et algorithmes novateurs afin de résoudre plusieurs problèmes d’envergure liés à l’ingénierie de trafic et disponibilité du réseau. L’architecture PCE est tout d’abord décrite ainsi que le protocole de signalisation PCEP utilisé entre clients et serveurs, puis les protocoles de découvertes de PCE et algorithmes de partage de charge. Ensuite un nouvel algorithme récursif est spécifié permettant grâce à un calcul collaboratif et récursif distribué impliquant une suite de PCEs de calculer le chemin optimal pour des tunnels inter-domaines. Un nouveau paradigme pour le calcul des chemin de secours est spécifié qui permet à chaque nœud d’agir en tant que PCE pour le calcul des tunnels de secours de chacun de ses voisins dans l’hypothèse que sa propre panne, permettant une utilisation partagée des ressources réseau dédiées au secours pour des tunnels protégeant des ressources indépendantes... / Modern data networks carry a wide variety of traffic such as voice, video, data and other industrial protocols that require guaranteed quality of service. Traffic Engineering (TE) allows for network resource optimization while meeting service level agreement for these sensitive traffics in terms of delays, jitter but also network reliability in case of network element failure. To that end a technology making use of constrained paths using label switching (called MPLS TE) has been developed and widely used in a number of networks. The objective of this thesis is to propose a new architecture model referred to as the Path Computation Element (PCE) along with a number of protocols and algorithms in order to tackle a number of technical challenges. First the PCE architecture is described in terms of functional blocks with its protocols: the signalization protocol called PCEP used between client and servers in charge of computing label switched path in the network, the process of PCE discovery and load balancing. Then a new backward recursive algorithm is specified allowing for the computation of optimal inter-domain tunnels, which involves a series of stateless PCEs. We then introduce a paradigm shift consisting distributing the computation of backup tunnels in the network used by the well-known technology called Fast Reroute. Thanks to this new paradigm, each node independently acts as a PCE computing the back tunnels of all of its neighbors, thus maximizing the degree of sharing of the backup capacity among tunnels that protect independent resources. We conclude this thesis by showing how the PCE architecture can be applied (with adaptations specified in the last two chapt...
|
2 |
Interdomain traffic engineering with MPLSPelsser, Cristel 10 November 2006 (has links)
During the last years, MultiProtocol Label Switching (MPLS) has been
deployed by most large Service Providers (SP). The main driver
for MPLS deployment is the ability to provide new services
with stringent Service Level Agreements (SLAs) such as layer-2 and layer-3
Virtual Private Networks (VPNs) as well as Voice and Video over IP.
Most of these services are already deployed inside single SP networks.
However, customers now require world-wide VPN and VoIP services.
Therefore, SPs need to collaborate to offer these services across
multiple SP networks.
Inside a single SP network, each node usually knows the complete topology
of the network with the load and delay of all the links. Based on this
information, each router is able to compute constrained paths toward any
other router inside the SP network. Then, it can establish a connection and
reserve resources along the computed path with the Resource reSerVation
Protocol (RSVP-TE). However, when services with stringent requirements must
cross multiple SP networks the computation of the path
becomes a problem. Routers in different SP networks exchange routing
information by using the Border Gateway Protocol (BGP). BGP provides
reachability information. It does not distribute complete topology, delay
and bandwidth information. One way to provide guaranteed services crossing
different SPs is to delegate the computation of the paths to a Path
Computation Element (PCE) that learns the topology of the different SPs.
However, this requires that SPs reveal information that they usually consider
confidential, their topology.
In this thesis, we perform active measurements to show the difficulty to
engineer the interdomain traffic with BGP. MPLS together with
RSVP-TE provide much more control on the traffic. We define extensions
to RSVP-TE for the protection of inter-AS MPLS paths. The aim is to be able
to provide the same service guarantees as inside a domain while keeping
the internal topology of SPs confidential, as required by SPs. We propose
and evaluate distributed techniques relying on PCEs for the computation of
interdomain constrained paths respecting the latter confidentiality
requirement.
|
Page generated in 0.1348 seconds