• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 182
  • 45
  • 24
  • 24
  • 14
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 422
  • 422
  • 100
  • 86
  • 83
  • 76
  • 64
  • 61
  • 56
  • 55
  • 48
  • 45
  • 45
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Planejamento de trajetória para estacionamento de veículos autônomos / Path planning for autonomous vehicles parking

Marcos Gomes Prado 01 March 2013 (has links)
A navegação autônoma é um dos problemas fundamentais na área de robótica móvel. Esse problema vem sendo pesquisado nessa área por décadas e ainda apresenta um grande potencial para pesquisas científicas. A maior parte dos algoritmos e soluções desenvolvidas nessa área foi concebida para que robôs operem em ambientes estruturados. No entanto, outra questão de grande interesse para pesquisadores da área é a navegação em ambientes externos. Em ambientes não estruturado os veículos autônomos (robôs de grande porte) devem ser capazes de desviar de obstáculos, que eventualmente apareçam no caminho. Esta dissertação aborda o desenvolvimento de um sistema inteligente capaz de gerar e executar um planejamento de caminho para o estacionamento de veículos autônomos em ambientes semi-estruturados. O sistema é capaz de reconhecer vagas de estacionamento por meio de sensores instalados no veículo, gerar uma trajetória válida que o conduza até a vaga e enviar os comandos de esterçamento e aceleração que guiam o veículo pelo caminho gerado / Autonomous navigation is one of the fundamental problems in mobile robotics. This problem has been addressed for decades and still has great potential for scientific research. Most solutions and algorithms developed in this field is designed for robots that operate in structured environments. However, another issue of great interest to researchers in this area is autonomous navigation in outdoor environments. In partially structured environments autonomous vehicles (large robots) must be able to avoid obstacles that may arise along the way. This dissertation addresses the development of an intelligent system able to generate and run a path planning for parking of autonomous vehicles in semi-structured environments. The system is able to recognize parking lots using sensors installed in the vehicle, generate a valid path that leads up to the parking lot and send the steering commands and acceleration that to guide the vehicle to its goal point
352

Dynamic Mission Planning for Unmanned Aerial Vehicles

Rennu, Samantha R. January 2020 (has links)
No description available.
353

Vizualizace algoritmů pro plánování cesty / Path Planning Algorithms Visualisation

Řepka, Michal January 2018 (has links)
Finding of collision free path is central in creation of mobile, autonomous robot. Goal of this paper is to show the most important algorithms implementing such solutions. It also describes application that is being created to allow students experiment with these methods. For this purpose it uses library that was introduced by Jakub Rusnák in 2017, which means this is a continuation and possibly extension of his work.
354

Plánování trasy pro autonomní robotickou sekačku / Coverage Path Planning for Autonomous Robotic Lawn Mower

Moninec, Michal January 2021 (has links)
This diploma thesis is covering the coverage path planning problem for autonomous robotic lawn mower in an area, which is fully defined before and is not changing. It contains a review of the currently used methods and an implementation of a software with a graphic user interface, which is capable of generating optimalized path.
355

Řízení pohybu modelu průmyslového robota / Movement control of an industrial robot model

Smrčka, Jiří January 2011 (has links)
The thesis aims to put in practice control unit of industrial robot ROB 2-6. The control unit is put in practice with the use of processor from the ARM STM32F100 family. Altogether with the control module it is supposed to be also realized HMI which will enable program loading and servicing of the control unit. The visualization model and algorithm of track planning is also realized within this work.
356

Expert Systems and Advanced Algorithms in Mobile Robots Path Planning / Expert Systems and Advanced Algorithms in Mobile Robots Path Planning

Abbadi, Ahmad January 2016 (has links)
Metody plánování pohybu jsou významnou součástí robotiky, resp. mobilních robotických platforem. Technicky je realizace plánování pohybu z globální úrovně převedena do posloupnosti akcí na úrovni specifické robotické platformy a definovaného prostředí, včetně omezení. V rámci této práce byla provedena recenze mnoha metod určených pro plánování cest, přičemž hlavním těžištěm byly metody založené na tzv. rychle rostoucích stromech (RRT), prostorovém rozkladu (CD) a využití fuzzy expertních systémů (FES). Dosažené výsledky, resp. prezentované algoritmy, využívají dostupné informace z pracovního prostoru mobilního robotu a jsou aplikovatelné na řešení globální pohybové trajektorie mobilních robotů, resp. k řešení specifických problémů plánování cest s omezením typu úzké koridory či překážky s proměnnou polohou v čase. V práci jsou představeny nové plánovací postupy využívající výhod algoritmů RRT a CD. Navržené metody jsou navíc efektivně rozšířeny s využitím fuzzy expertního systému, který zlepšuje jejich chování. Práce rovněž prezentuje řešení pro plánovací problémy typu identifikace úzkých koridorů, či významných oblastí prostoru řešení s využitím přístupů na bázi dekompozice prostoru. V řešeních jsou částečně zahrnuty sub-optimalizace nalezených cest založené na zkracování nalezené cesty a vyhlazování cesty, resp. nahrazení trajektorie hladkou křivkou, respektující lépe předpokládanou dynamiku mobilního zařízení. Všechny prezentované metody byly implementovány v prostředí Matlab, které sloužilo k simulačnímu ověření efektivnosti vlastních i převzatých metod a k návrhu prostoru řešení včetně omezení (překážky). Získané výsledky byly vyhodnoceny s využitím statistických přístupů v prostředí Minitab a Matlab.
357

Plánování pohybu objektu v 3D prostoru / Path Planning in 3D Space

Němec, František January 2016 (has links)
This paper deals with the problem of object path planning in 3D space. The goal is to create program which allows users to create a scene used for path planning, perform the planning and finally visualize path in the scene. Work is focused on probabilistic algorithms that are described in the theoretical part. The practical part describes the design and implementation of application. Finally, several experiments are performed to compare the performance of different algorithms and demonstrate the functionality of the program.
358

A Hybrid Method for Distributed Multi-Agent Mission Planning System

Nicholas S Schultz (8747079) 22 April 2020 (has links)
<div>The goal of this research is to develop a method of control for a team of unmanned aerial and ground robots that is resilient, robust, and scalable given both complete and incomplete information of the environment. The method presented in this paper integrates approximate and optimal methods of path planning integrated with a market-based task allocation strategy. Further work presents a solution to unmanned ground vehicle path planning within the developed mission planning system framework under incomplete information. Deep reinforcement learning is proposed to solve movement through unknown terrain environment. The final demonstration for Advantage-Actor Critic deep reinforcement learning elicits successful implementation of the proposed model.</div>
359

Système de planification de chemins aériens en 3D : préparation de missions et replanification en cas d'urgence / System for 3D flight planning : mission preparation and emergency replanning

Baklouti, Zeineb 13 September 2018 (has links)
L’enjeu de planification de vol à bord d’un hélicoptère en tenant compte des différents paramètres environnementaux constitue un facteur clé dans le secteur aéronautique afin d’assurer une mission en toute sécurité avec un coût réduit. Ce défi concerne à la fois la phase de préparation de la mission sur une station au sol mais aussi en cours de vol pour faire face à un évènement imprévu. Nous citons un premier exemple de mission de type recherche et sauvetage qui dispose d’un temps limité pour localiser et rechercher des personnes en danger. Pour ce faire, le plan de vol généré doit suivre le relief du terrain à des altitudes relativement basses entre des points de passage désignés. L’objectif est de permettre au pilote de localiser une victime dans une durée bornée. Un deuxième type de mission comme l’assistance médicale a la particularité d’assurer un vol qui favorise le confort du passager ainsi qu’une route qui minimise le temps de vol selon la criticité de la situation. Pendant la phase dynamique, lorsqu’il s’agit d’un événement complexe telle qu’une panne moteur, une replanification de la mission devient nécessaire afin de trouver un chemin aérien qui permet d’atterrir en toute sécurité dans les plus brefs délais. Dans un autre exemple comme l’évitement d’obstacle dynamique ou de zone dangereuse, il s’agit de calculer un autre plan de vol pour atteindre la destination. Cependant à ce jour, les pilotes ne bénéficient pas de système d’autoroutage 3D permettant la replanification dynamique de mission face à une situation d’urgence. Face au défi de génération d’un plan de vol optimal, nos réflexions profondes ont abouti à la proposition d’un nouveau système de planification de chemin, pour des aéronefs, dédié à la préparation de mission avant le vol ainsi qu’à la replanification dynamique en cours de vol face à une situation d’urgence. Le système de planification peut être déployé sur une station au sol ou bien intégré comme fonction avionique au sein de l’aéronef. Les résultats obtenus ont abouti à un brevet déposé devant l’INPI et à plusieurs actions de transfert technologique au sein d’Airbus Hélicoptères. Le système s’appuie sur des techniques de discrétisation de l’espace et de calcul du plus court chemin afin de générer automatiquement des solutions flexibles en terme de profil de chemin en respectant plusieurs contraintes liées à l’appareil, le terrain et l’environnement. La solution proposée est générique et capable de s’adapter selon le type de l’aéronef, le type de la mission et la fonction objectif à minimiser. Le système de planification peut offrir des solutions avec différents compromis entre le temps d’exécution et la qualité du chemin selon le temps disponible qui peut être corrélé avec la criticité de la situation. Le fonctionnement du système de planification de chemin se compose principalement de deux phases : le prétraitement et le routage. La phase de prétraitement permet une discrétisation multi-altitude de l’espace 3D selon une précision donnée et la génération automatique d’un graphe de navigation avec une connexité paramétrable. La phase de routage 3D calcule le chemin en prenant en considération un ensemble de contraintes telles que les limitations angulaires en horizontal et en vertical et une fonction objectif à minimiser tels que la distance, le carburant, le temps, etc. Lors de la phase d’exploration du graphe, le système de planification peut communiquer avec le modèle de performance de l’appareil afin de minimiser une fonction coût liée à la performance et de s’assurer au fur et à mesure de la faisabilité de la mission. La génération automatique des plans de vol et la replanification dynamique représentent une brique essentielle pour concevoir des systèmes d’assistance au pilote ainsi que des aéronefs autonomes. / Helicopter flight planning is a key factor in the aeronautics domain in order to ensure a safe mission at a reduced cost taking into consideration different environmental parameters like terrain, weather, emergency situations, etc. This challenge concerns both the mission preparation phase using a ground station and also during the flight to cope with a complex event (mechanical failure, dynamic obstacle, bad weather conditions, etc.). We quote as a first example a Search and Rescue mission that should be performed in limited time to locate persons in danger. To achieve that, the generated flight path must follow the terrain profile at relatively low altitudes crossing the predefined waypoints. The objective is to allow the pilot to locate a victim in a short time. Another example for a mission of medical assistance where the helicopter should ensure the comfort of patients as well as minimizing the flight time to respect critical situations. During the flight, when a complex event occurs such as engine failure, re-planning the mission becomes necessary in order to find a new path that could guarantee safe landing. Unfortunately, pilots do not benefit from an embedded 3D path planning system that enables dynamic mission re-planning in case of emergency. To tackle the challenge of generating an optimal flight plan, we proposed new path planning system dedicated to mission preparation and dynamic path re-planning during critical situations. The planning system can be deployed on a ground station or embedded as an avionic function in the aircraft. The achieved results are registered as a patent at National Institute of Intellectual Property and deployed inside Airbus Helicopters through several technology transfers. The system relies on 3D space discretization and shortest path planning techniques to generate automatically flexible path profiles that respect several. The proposed solution is generic and is able to adapt to the aircraft model, mission and the objective function to be minimized. The path planning system can offer solutions with different tradeoffs between timing and path quality within the available runtime depending on the criticality of the situation. The functioning of the path planning system consists mainly of two phases : preprocessing and routing phase. The preprocessing allows a multi-altitude discretization of the 3D space according to a given precision and generate automatically a navigation graph with a configurable density. The 3D routing phase calculates the path by considering a set of constraints such as horizontal and vertical angular limitations and the objective function such as distance, fuel, time, etc. During the graph exploration phase, the path planning system can communicate with the aircraft performance model to evaluate a given criterion. Automatic flight path generation is an essential building block for designing pilot assistance systems and autonomous aircraft. In summary, we succeeded to reach the industrial expectations namely : the evaluation of mission feasibility, performances improvement, navigation workload reduction, as well as improving the flight safety. In order to realize the proposed solution, we designed a new tool for automatic 3D flight path planning. We named our tool DTANAV : Demonstration Tool for Aircraft NAVigation. It allows to apply the proposed planning process on real scenarios. Through the tool interface, the user has the possibility to set the parameters related to the mission (starting point, end point, aircraft model, navigation ceiling, etc.). Other algorithmic parameters are defined in order to control the quality and the profile of the generated solution.
360

Approche géométrique couleur pour le traitement des images catadioptriques / A geometric-color approach for processing catadioptric images

Aziz, Fatima 11 December 2018 (has links)
Ce manuscrit étudie les images omnidirectionnelles catadioptriques couleur en tant que variétés Riemanniennes. Cette représentation géométrique ouvre des pistes intéressantes pour résoudre les problèmes liés aux distorsions introduites par le système catadioptrique dans le cadre de la perception couleur des systèmes autonomes. Notre travail démarre avec un état de l’art sur la vision omnidirectionnelle, les différents dispositifs et modèles de projection géométriques. Ensuite, nous présentons les notions de base de la géométrie Riemannienne et son utilisation en traitement d’images. Ceci nous amène à introduire les opérateurs différentiels sur les variétés Riemanniennes, qui nous seront utiles dans cette étude. Nous développons alors une méthode de construction d’un tenseur métrique hybride adapté aux images catadioptriques couleur. Ce tenseur a la double caractéristique, de dépendre de la position géométrique des points dans l’image, et de leurs coordonnées photométriques également. L’exploitation du tenseur métrique proposé pour différents traitements des images catadioptriques, est une partie importante dans cette thèse. En effet, on constate que la fonction Gaussienne est au cœur de plusieurs filtres et opérateurs pour diverses applications comme le débruitage, ou bien l’extraction des caractéristiques bas niveau à partir de la représentation dans l’espace-échelle Gaussien. On construit ainsi un nouveau noyau Gaussien dépendant du tenseur métrique Riemannien. Il présente l’avantage d’être applicable directement sur le plan image catadioptrique, également, variable dans l’espace et dépendant de l’information image locale. Dans la dernière partie de cette thèse, nous discutons des applications robotiques de la métrique hybride, en particulier, la détection de l’espace libre navigable pour un robot mobile, et nous développons une méthode de planification de trajectoires optimal. / This manuscript investigates omnidirectional catadioptric color images as Riemannian manifolds. This geometric representation offers insights into the resolution of problems related to the distortions introduced by the catadioptric system in the context of the color perception of autonomous systems. The report starts with an overview of the omnidirectional vision, the different used systems, and the geometric projection models. Then, we present the basic notions and tools of Riemannian geometry and its use in the image processing domain. This leads us to introduce some useful differential operators on Riemannian manifolds. We develop a method of constructing a hybrid metric tensor adapted to color catadioptric images. This tensor has the dual characteristic of depending on the geometric position of the image points and their photometric coordinates as well.In this work, we mostly deal with the exploitation of the previously constructed hybrid metric tensor in the catadioptric image processing. Indeed, it is recognized that the Gaussian function is at the core of several filters and operators for various applications, such as noise reduction, or the extraction of low-level characteristics from the Gaussian space- scale representation. We thus build a new Gaussian kernel dependent on the Riemannian metric tensor. It has the advantage of being applicable directly on the catadioptric image plane, also, variable in space and depending on the local image information. As a final part in this thesis, we discuss some possible robotic applications of the hybrid metric tensor. We propose to define the free space and distance transforms in the omni- image, then to extract geodesic medial axis. The latter is a relevant topological representation for autonomous navigation, that we use to define an optimal trajectory planning method.

Page generated in 0.0853 seconds