1 |
Modelling and prediction of bacterial attachment to polymersEpa, V.C., Hook, A.L., Chang, Chien-Yi, Yang, J., Langer, R., Anderson, D.G., Williams, P., Davies, M.C., Alexander, M.R., Winkler, D.A. 12 April 2013 (has links)
Yes / Infection by pathogenic bacteria on implanted and indwelling medical devices during surgery causes large morbidity and mortality worldwide. Attempts to ameliorate this important medical issue have included development of antimicrobial surfaces on materials, “no touch” surgical procedures, and development of materials with inherent low pathogen attachment. The search for new materials is increasingly being carried out by high throughput methods. Efficient methods for extracting knowledge from these large data sets are essential. Data from a large polymer microarray exposed to three clinical pathogens is used to derive robust and predictive machine-learning models of pathogen attachment. The models can predict pathogen attachment for the polymer library quantitatively. The models also successfully predict pathogen attachment for a second-generation library, and identify polymer surface chemistries that enhance or diminish pathogen attachment. / CSIRO Advanced Materials Transformational Capability Platform. Newton Turner Award for Exceptional Senior Scientists. Wellcome Trust. Grant Number: 085245. NIH. Grant Number: R01 DE016516
|
Page generated in 0.0936 seconds