• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The identification of genes important to the growth of Staphylococcus aureus in in vitro models mimicking infection

Wiltshire, Michael David January 2001 (has links)
Staphylococcus aureus is a major pathogen, which causes a wide range of infections. Despite its obvious clinical importance, little is known about the mechanisms of pathogenesis. An in vitro model mimicking infection was developed in order to identify putative virulence determinants. The model involves the growth of S. aureus in serum under microaerobic conditions. All known virulence factors tested were shown not to be required for growth, or preferentially expressed, in serum. Tn917 transposon libraries of S. aureus were screened to identify genes preferentially expressed in serum, compared to a nutrient-rich growth medium. 73 clones were identified and the transposon insertion site was characterised for 23 of these clones. Analysis of sequence flanking the transposon insertion revealed the identity of the mutated loci. 10 out of 23 sequenced clones, contained transposons inserted within genes involved in the biosynthesis of the aspartate family of amino acids (lysine. threonine, methionine and isoleucine). These were: the two common pathway enzymes; aspartokinase (lysC) , and aspartate semi aldehyde dehydrogenase (asd) , along with; dihydrodipicolinate dehydrogenase (dapA), and cystathionine y-synthase (yjcf) , involved in the biosynthesis oflysine and methionine respectively. Analysis of methionine biosynthesis indicated that S. aureus possesses only a single pathway, which proceeds via cystathionine. Several genes encoding methionine biosynthetic enzymes were found clustered on the S. aureus chromosome. The genes lyse, asd and dapA were found to be encoded by the first three genes of an eight gene operon, which also contains three other genes involved in lysine biosynthesis. This operon named the dap operon, is the major lysine biosynthetic operon of S. aureus. lysC, asd and dapA were all found to be repressed at the transcriptional level primarily by lysine, although factors other than the availability of lysine may be responsible for the regulation of lysine biosynthetic gene expression in serum. lysC, asd and dapA were all found to be expressed in vivo, in a murine pyelonephritis model using both RT-PCR and TaqMan techniques. However, these genes were not found to be important in three murine pathogenicity models. Finally, in addition to the development of a model mimicking infection, and the identification of genes with a potentially important role in vivo, this thesis has enhanced our understanding of both methionine and lysine biosynthesis in S. aureus.
2

Characterizing the Molecular Genetic, Phenotypic and Virulence Properties of the Invasive Nontyphoidal Salmonella Strain D23580: An Integrated Approach

January 2015 (has links)
abstract: Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation networks and increased populations of immunocompromised individuals (as a result of HIV infection, drug use, cancer therapy, aging, etc). While it is unclear as to how Salmonella ST313 strains cause invasive disease in humans, it is intriguing that the genomic profile of some of these pathovars indicates key differences between classic Typhimurium (broad host range), but similarities to human-specific typhoidal Salmonella Typhi and Paratyphi. In an effort to advance fundamental understanding of the pathogenesis mechanisms of ST313 in humans, I report characterization of the molecular genetic, phenotypic and virulence profiles of D23580 (a representative ST313 strain). Preliminary studies to characterize D23580 virulence, baseline stress responses, and biochemical profiles, and in vitro infection profiles in human surrogate 3-D tissue culture models were done using conventional bacterial culture conditions; while subsequent studies integrated a range of incrementally increasing fluid shear levels relevant to those naturally encountered by D23580 in the infected host to understand the impact of biomechanical forces in altering these characteristics. In response to culture of D23580 under these conditions, distinct differences in transcriptional biosignatures, pathogenesis-related stress responses, in vitro infection profiles and in vivo virulence in mice were observed as compared to those of classic Salmonella pathovars tested. Collectively, this work represents the first characterization of in vivo virulence and in vitro pathogenesis properties of D23580, the latter using advanced human surrogate models that mimic key aspects of the parental tissue. Results from these studies highlight the importance of studying infectious diseases using an integrated approach that combines actions of biological and physical networks that mimic the host-pathogen microenvironment and regulate pathogen responses. / Dissertation/Thesis / Doctoral Dissertation Microbiology 2015

Page generated in 0.1121 seconds