Spelling suggestions: "subject:"patientcentred applications"" "subject:"patientcentrad applications""
1 |
Data hiding algorithms for healthcare applicationsFylakis, A. (Angelos) 12 November 2019 (has links)
Abstract
Developments in information technology have had a big impact in healthcare, producing vast amounts of data and increasing demands associated with their secure transfer, storage and analysis. To serve them, biomedical data need to carry patient information and records or even extra biomedical images or signals required for multimodal applications. The proposed solution is to host this information in data using data hiding algorithms through the introduction of imperceptible modifications achieving two main purposes: increasing data management efficiency and enhancing the security aspects of confidentiality, reliability and availability. Data hiding achieve this by embedding the payload in objects, including components such as authentication tags, without requirements in extra space or modifications in repositories. The proposed methods satisfy two research problems. The first is the hospital-centric problem of providing efficient and secure management of data in hospital networks. This includes combinations of multimodal data in single objects. The host data were biomedical images and sequences intended for diagnoses meaning that even non-visible modifications can cause errors. Thus, a determining restriction was reversibility. Reversible data hiding methods remove the introduced modifications upon extraction of the payload. Embedding capacity was another priority that determined the proposed algorithms. To meet those demands, the algorithms were based on the Least Significant Bit Substitution and Histogram Shifting approaches. The second was the patient-centric problem, including user authentication and issues of secure and efficient data transfer in eHealth systems. Two novel solutions were proposed. The first method uses data hiding to increase the robustness of face biometrics in photos, where due to the high robustness requirements, a periodic pattern embedding approach was used. The second method protects sensitive user data collected by smartphones. In this case, to meet the low computational cost requirements, the method was based on Least Significant Bit Substitution. Concluding, the proposed algorithms introduced novel data hiding applications and demonstrated competitive embedding properties in existing applications. / Tiivistelmä
Modernit terveydenhuoltojärjestelmät tuottavat suuria määriä tietoa, mikä korostaa tiedon turvalliseen siirtämiseen, tallentamiseen ja analysointiin liittyviä vaatimuksia. Täyttääkseen nämä vaatimukset, biolääketieteellisen tiedon täytyy sisältää potilastietoja ja -kertomusta, jopa biolääketieteellisiä lisäkuvia ja -signaaleja, joita tarvitaan multimodaalisissa sovelluksissa. Esitetty ratkaisu on upottaa tämä informaatio tietoon käyttäen tiedonpiilotusmenetelmiä, joissa näkymättömiä muutoksia tehden saavutetaan kaksi päämäärää: tiedonhallinnan tehokkuuden nostaminen ja luottamuksellisuuteen, luotettavuuteen ja saatavuuteen liittyvien turvallisuusnäkökulmien parantaminen. Tiedonpiilotus saavuttaa tämän upottamalla hyötykuorman, sisältäen komponentteja, kuten todentamismerkinnät, ilman lisätilavaatimuksia tai muutoksia tietokantoihin. Esitetyt menetelmät ratkaisevat kaksi tutkimusongelmaa. Ensimmäinen on sairaalakeskeinen ongelma tehokkaan ja turvallisen tiedonhallinnan tarjoamiseen sairaaloiden verkoissa. Tämä sisältää multimodaalisen tiedon yhdistämisen yhdeksi kokonaisuudeksi. Tiedon kantajana olivat biolääketieteelliset kuvat ja sekvenssit, jotka on tarkoitettu diagnosointiin, missä jopa näkymättömät muutokset voivat aiheuttaa virheitä. Siispä määrittävin rajoite oli palautettavuus. Palauttavat tiedonpiilotus-menetelmät poistavat lisätyt muutokset, kun hyötykuorma irrotetaan. Upotuskapasiteetti oli toinen tavoite, joka määritteli esitettyjä algoritmeja. Saavuttaakseen nämä vaatimukset, algoritmit perustuivat vähiten merkitsevän bitin korvaamiseen ja histogrammin siirtämiseen. Toisena oli potilaskeskeinen ongelma, joka sisältää käyttäjän henkilöllisyyden todentamisen sekä turvalliseen ja tehokkaaseen tiedonsiirtoon liittyvät haasteet eHealth-järjestelmissä. Työssä ehdotettiin kahta uutta ratkaisua. Ensimmäinen niistä käyttää tiedonpiilotusta parantamaan kasvojen biometriikan kestävyyttä valokuvissa. Korkeasta kestävyysvaatimuksesta johtuen käytettiin periodisen kuvion upottamismenetelmää. Toinen menetelmä suojelee älypuhelimien keräämää arkaluontoista käyttäjätietoa. Tässä tapauksessa, jotta matala laskennallinen kustannus saavutetaan, menetelmä perustui vähiten merkitsevän bitin korvaamiseen. Yhteenvetona ehdotetut algoritmit esittelivät uusia tiedonpiilotussovelluksia ja osoittivat kilpailukykyisiä upotusominaisuuksia olemassa olevissa sovelluksissa.
|
Page generated in 0.157 seconds