• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 906
  • 325
  • 89
  • 81
  • 27
  • 21
  • 19
  • 18
  • 18
  • 18
  • 18
  • 18
  • 17
  • 15
  • 13
  • Tagged with
  • 2341
  • 2341
  • 1000
  • 952
  • 659
  • 621
  • 500
  • 486
  • 401
  • 339
  • 278
  • 276
  • 256
  • 231
  • 218
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

On the applicability of wavelet transforms to image and video compression

Stromme, Oyvind January 1999 (has links)
No description available.
542

Advances in the design of aperture filters

Green, Alan C. January 2003 (has links)
No description available.
543

Semi-automatic image processing with application to fungal hyphae

Inglis, Iain McAllister January 1999 (has links)
No description available.
544

Weakly Supervised Learning Algorithms and an Application to Electromyography

Hesham, Tameem January 2014 (has links)
In the standard machine learning framework, training data is assumed to be fully supervised. However, collecting fully labelled data is not always easy. Due to cost, time, effort or other types of constraints, requiring the whole data to be labelled can be difficult in many applications, whereas collecting unlabelled data can be relatively easy. Therefore, paradigms that enable learning from unlabelled and/or partially labelled data have been growing recently in machine learning. The focus of this thesis is to provide algorithms that enable weakly annotating unlabelled parts of data not provided in the standard supervised setting consisting of an instance-label pair for each sample, then learning from weakly as well as strongly labelled data. More specifically, the bulk of the thesis aims at finding solutions for data that come in the form of bags or groups of instances where available information about the labels is at the bag level only. This is the form of the electromyographic (EMG) data, which represent the main application of the thesis. Electromyographic (EMG) data can be used to diagnose muscles as either normal or suffering from a neuromuscular disease. Muscles can be classified into one of three labels; normal, myopathic or neurogenic. Each muscle consists of motor units (MUs). Equivalently, an EMG signal detected from a muscle consists of motor unit potential trains (MUPTs). This data is an example of partially labelled data where instances (MUs) are grouped in bags (muscles) and labels are provided for bags but not for instances. First, we introduce and investigate a weakly supervised learning paradigm that aims at improving classification performance by using a spectral graph-theoretic approach to weakly annotate unlabelled instances before classification. The spectral graph-theoretic phase of this paradigm groups unlabelled data instances using similarity graph models. Two new similarity graph models are introduced as well in this paradigm. This paradigm improves overall bag accuracy for EMG datasets. Second, generative modelling approaches for multiple-instance learning (MIL) are presented. We introduce and analyse a variety of model structures and components of these generative models and believe it can serve as a methodological guide to other MIL tasks of similar form. This approach improves overall bag accuracy, especially for low-dimensional bags-of-instances datasets like EMG datasets. MIL generative models provide an example of models where probability distributions need to be represented compactly and efficiently, especially when number of variables of a certain model is large. Sum-product networks (SPNs) represent a relatively new class of deep probabilistic models that aims at providing a compact and tractable representation of a probability distribution. SPNs are used to model the joint distribution of instance features in the MIL generative models. An SPN whose structure is learnt by a structure learning algorithm introduced in this thesis leads to improved bag accuracy for higher-dimensional datasets.
545

Gamut mapping and appearance models in graphic arts colour management

Green, Philip John January 2003 (has links)
No description available.
546

Speech recognition in adverse environments

Milner, Benjamin Peter January 1994 (has links)
No description available.
547

Automated materials discrimination using 3D dual energy X ray images

Wang, Ta Wee January 2002 (has links)
No description available.
548

The automatic extraction of 3D information from stereoscopic dual-energy X-ray images

Sobania, A. S. January 2003 (has links)
No description available.
549

The development of novel steroscopic imaging sensors

Godber, S. X. January 1991 (has links)
No description available.
550

The use of orthographic and lexical information for handwriting recognition

Wells, Cynthia Joyce January 1992 (has links)
No description available.

Page generated in 0.0881 seconds