• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a capital investment framework for a gold mine / M. Clasen

Clasen, Mari January 2011 (has links)
This study was done against the backdrop that executives should carefully consider all the options to manage difficult periods before letting employees go, especially if they are going to rehire employees shortly after the economic recovery. Therefore, the study investigated whether investing in operational development of a plant can be used to increase feasibility, rather than to make across–the–board labour cuts. Two South African mining companies were chosen for this study. They are two investment centres at AngloGold Ashanti, Mine X Ltd. and Mine Z Ltd. The investigating project was done at Mine X to extract gold from the neighbouring Mine Z. Mine X will have access to the minerals 40 years in advance of Mine Z due to insufficient essential infrastructure at Mine Z. The life–time of the project is 18 years (estimated). The main objective of this study is to investigate the feasibility, from Mine X’s point of view, with a deepening project including Mine Z. The most significant aspect will be to determine which investment timeframe decision will gain Mine X a feasible position in terms of economic growth. This will be achieved by the following secondary objectives in making a capital investment decision: 1. To describe the nature and significance of investment decision making. 2. To recognise appropriate capital investment evaluation techniques in conjunction with sensitivity analysis. 3. To apply the techniques and sensitivity analysis in order to make a decision of a possible, feasible investment opportunity at Mine X. 4. To develop a framework to identify the project’s components and associate and access difficulties for Mine X‘s project lifecycle. The feasibility study undertakes multiple scenarios and provides recommendations and a final report, based on the scenario that is the most viable. The following techniques which were identified were used to analyse the feasibility of the project: Net present value, internal rate of return and payback period. All these above techniques will be analysed in three different scenarios, namely: 1. Mine X will stay with its current operations without any new projects. 2. The development project will begin immediately. 3. A six–month delay in development of the project. The study found that the net present value was positive, the internal rate of return was more than the discount rate and the payback period was shorter than the project’s life–time regarding to all three above–mentioned scenarios. The highest net present value is calculated in case the project starts immediately. Both the internal rate of return and the payback period indicated that a six month delay in the project is the most viable. After considering all the facts, the study concluded due to the highest net present value the best feasible recommendation would be to start the project immediately. The value of this study is that it is the first study to investigate the relationship between the viability to delay or to start the investment project immediately in the South African mining industry. This study is also unique, since it takes into account how mining industries world–wide can achieve long–term success through development projects without losing key players, due to impulsive short–term downsizing decisions. / Thesis (M.Com. (Management Accountancy))--North-West University, Potchefstroom Campus, 2012.
2

Development of a capital investment framework for a gold mine / M. Clasen

Clasen, Mari January 2011 (has links)
This study was done against the backdrop that executives should carefully consider all the options to manage difficult periods before letting employees go, especially if they are going to rehire employees shortly after the economic recovery. Therefore, the study investigated whether investing in operational development of a plant can be used to increase feasibility, rather than to make across–the–board labour cuts. Two South African mining companies were chosen for this study. They are two investment centres at AngloGold Ashanti, Mine X Ltd. and Mine Z Ltd. The investigating project was done at Mine X to extract gold from the neighbouring Mine Z. Mine X will have access to the minerals 40 years in advance of Mine Z due to insufficient essential infrastructure at Mine Z. The life–time of the project is 18 years (estimated). The main objective of this study is to investigate the feasibility, from Mine X’s point of view, with a deepening project including Mine Z. The most significant aspect will be to determine which investment timeframe decision will gain Mine X a feasible position in terms of economic growth. This will be achieved by the following secondary objectives in making a capital investment decision: 1. To describe the nature and significance of investment decision making. 2. To recognise appropriate capital investment evaluation techniques in conjunction with sensitivity analysis. 3. To apply the techniques and sensitivity analysis in order to make a decision of a possible, feasible investment opportunity at Mine X. 4. To develop a framework to identify the project’s components and associate and access difficulties for Mine X‘s project lifecycle. The feasibility study undertakes multiple scenarios and provides recommendations and a final report, based on the scenario that is the most viable. The following techniques which were identified were used to analyse the feasibility of the project: Net present value, internal rate of return and payback period. All these above techniques will be analysed in three different scenarios, namely: 1. Mine X will stay with its current operations without any new projects. 2. The development project will begin immediately. 3. A six–month delay in development of the project. The study found that the net present value was positive, the internal rate of return was more than the discount rate and the payback period was shorter than the project’s life–time regarding to all three above–mentioned scenarios. The highest net present value is calculated in case the project starts immediately. Both the internal rate of return and the payback period indicated that a six month delay in the project is the most viable. After considering all the facts, the study concluded due to the highest net present value the best feasible recommendation would be to start the project immediately. The value of this study is that it is the first study to investigate the relationship between the viability to delay or to start the investment project immediately in the South African mining industry. This study is also unique, since it takes into account how mining industries world–wide can achieve long–term success through development projects without losing key players, due to impulsive short–term downsizing decisions. / Thesis (M.Com. (Management Accountancy))--North-West University, Potchefstroom Campus, 2012.
3

Payback periods for photovoltaics integrated in nonbuilding structures / Återbetalningstider för solceller i anläggningskonstruktioner

Olsson, Styrbjörn, Candler, Simon January 2019 (has links)
In order to provide Sweden and other countries across the globe with energy in a long-term and sustainable manner that accounts for our global environmental goals, we need to adopt more sources of renewable energy. Solar panels and other forms of solar power is one of these renewable energy sources that has a lot of potential and the technology has become increasingly more common in Sweden and other parts of the world in the latest decades. Everyone from private individuals to companies and authorities are increasingly making investments in the technology. With the help of our supervisors and after extensive literature studies we aim to increase the knowledge about solar panels and their economic aspects by calculating and presenting payback periods for solar panels implemented in nonbuilding structures. In conjunction with this we also aim to present a basic theoretical background about solar panels and their global impact to further the understanding of the technology even more. On behalf of, and in collaboration with Trafikverket we have examined the payback periods of four solar panel installations in connection to four of the authority´s nonbuilding structures. Three of these solar installations are applied on technical buildings that are scattered alongside the railway system across the country. The solar panels provide local electricity to the electrical components within the building. The fourth solar installation is connected to a road tunnel where it provides local electricity to the lights within the tunnel. The conducted calculations have resulted in a payback period for each respective solar installation measured in years based on various relevant factors that influence their energy production. Our hope is that this can clarify the economic aspects of the solar panels and be of help in potential future investments in solar power by Trafikverket. The conclusion is that the solar panel installation connected to the road tunnel has the shortest payback period by far and also has great potential to be economically lucrative by generating future revenue. The tree solar installations connected to the technical buildings each have a significantly longer payback period but are still expected to be paid back eventually. However they are not expected to generate a mentionable yield, if any. / För att vi ska kunna förse Sverige och resterande delar av världen med energi på ett långsiktigt och hållbart sätt som tar hänsyn till de globala miljömålen krävs det att vi börjar använda mer förnyelsebara energikällor. Solceller och solenergi är en av dessa energikällor som har stor potential och tekniken har under de senaste decennierna blivit allt vanligare både i Sverige och i andra delar av världen. Allt från privatpersoner till företag och myndigheter gör i större och större utsträckning investeringar i tekniken. Med hjälp av litteraturstudier samt stöd från handledare syftar denna avhandling till att öka kunskapen om solceller och deras ekonomiska aspekter genom att beräkna och presentera återbetalningstider för solceller implementerade i anläggningskonstruktioner. I samband med detta kommer en grundläggande teoretisk bakgrund om solceller samt deras globala påverkan att presenteras för att öka förståelsen för ämnet ytterligare. På uppdrag av och i samarbete med Trafikverket har återbetalningstiden för fyra solcellsinstallationer i anslutning till myndighetens anläggningar undersökts. Tre av dessa är teknikhus längs med järnvägen utspridda i olika delar av landet där solcellsinstallationen bidrar med elektricitet till de tekniska komponenterna i huset. Den fjärde installationen ligger i anslutning till en vägtunnel där solcellsinstallationen bidrar med elektricitet till belysningen i tunneln. Resultatet av beräkningarna har gett en återbetalningstid i år för respektive installation baserat på diverse relevanta parametrar som påverkar elproduktionen. Vår förhoppning är att detta kan klargöra de ekonomiska aspekterna av solcellerna samt underlätta för Trafikverket att ta beslut om framtida potentiella solcellsinvesteringar i anslutning till deras anläggningar. Slutsatsen är att solcellsinstallationen i anslutning till vägnätet har den överlägset kortaste återbetalningstiden samt även god potential att bli ekonomiskt lukrativ. De tre installationerna i anslutning till teknikhusen har betydligt längre återbetalningstid och anses så småningom bli återbetalda men utan någon nämnvärd avkastning, om ens någon.
4

Payback periods for photovoltaics integrated in nonbuilding structures / Återbetalningstider för solceller i anläggningskonstruktioner

Olsson, Styrbjörn, Candler, Simon January 2019 (has links)
In order to provide Sweden and other countries across the globe with energy in a long-term and sustainable manner that accounts for our global environmental goals, we need to adopt more sources of renewable energy. Solar panels and other forms of solar power is one of these renewable energy sources that has a lot of potential and the technology has become increasingly more common in Sweden and other parts of the world in the latest decades. Everyone from private individuals to companies and authorities are increasingly making investments in the technology. With the help of our supervisors and after extensive literature studies we aim to increase the knowledge about solar panels and their economic aspects by calculating and presenting payback periods for solar panels implemented in nonbuilding structures. In conjunction with this we also aim to present a basic theoretical background about solar panels and their global impact to further the understanding of the technology even more. On behalf of, and in collaboration with Trafikverket we have examined the payback periods of four solar panel installations in connection to four of the authority´s nonbuilding structures. Three of these solar installations are applied on technical buildings that are scattered alongside the railway system across the country. The solar panels provide local electricity to the electrical components within the building. The fourth solar installation is connected to a road tunnel where it provides local electricity to the lights within the tunnel. The conducted calculations have resulted in a payback period for each respective solar installation measured in years based on various relevant factors that influence their energy production. Our hope is that this can clarify the economic aspects of the solar panels and be of help in potential future investments in solar power by Trafikverket. The conclusion is that the solar panel installation connected to the road tunnel has the shortest payback period by far and also has great potential to be economically lucrative by generating future revenue. The tree solar installations connected to the technical buildings each have a significantly longer payback period but are still expected to be paid back eventually. However they are not expected to generate a mentionable yield, if any. / För att vi ska kunna förse Sverige och resterande delar av världen med energi på ett långsiktigt och hållbart sätt som tar hänsyn till de globala miljömålen krävs det att vi börjar använda mer förnyelsebara energikällor. Solceller och solenergi är en av dessa energikällor som har stor potential och tekniken har under de senaste decennierna blivit allt vanligare både i Sverige och i andra delar av världen. Allt från privatpersoner till företag och myndigheter gör i större och större utsträckning investeringar i tekniken. Med hjälp av litteraturstudier samt stöd från handledare syftar denna avhandling till att öka kunskapen om solceller och deras ekonomiska aspekter genom att beräkna och presentera återbetalningstider för solceller implementerade i anläggningskonstruktioner. I samband med detta kommer en grundläggande teoretisk bakgrund om solceller samt deras globala påverkan att presenteras för att öka förståelsen för ämnet ytterligare. På uppdrag av och i samarbete med Trafikverket har återbetalningstiden för fyra solcellsinstallationer i anslutning till myndighetens anläggningar undersökts. Tre av dessa är teknikhus längs med järnvägen utspridda i olika delar av landet där solcellsinstallationen bidrar med elektricitet till de tekniska komponenterna i huset. Den fjärde installationen ligger i anslutning till en vägtunnel där solcellsinstallationen bidrar med elektricitet till belysningen i tunneln. Resultatet av beräkningarna har gett en återbetalningstid i år för respektive installation baserat på diverse relevanta parametrar som påverkar elproduktionen. Vår förhoppning är att detta kan klargöra de ekonomiska aspekterna av solcellerna samt underlätta för Trafikverket att ta beslut om framtida potentiella solcellsinvesteringar i anslutning till deras anläggningar. Slutsatsen är att solcellsinstallationen i anslutning till vägnätet har den överlägset kortaste återbetalningstiden samt även god potential att bli ekonomiskt lukrativ. De tre installationerna i anslutning till teknikhusen har betydligt längre återbetalningstid och anses så småningom bli återbetalda men utan någon nämnvärd avkastning, om ens någon. / FoI Solenergi

Page generated in 0.0412 seconds