Spelling suggestions: "subject:"pde10"" "subject:"pde's""
1 |
The Role of Ca²⁺/CaM-Stimulated Phosphodiesterase 1C in Vascular Smooth Muscle cells of the Synthetic/Activated PhenotypeRoss, ANDREW 03 July 2009 (has links)
Manipulations to cyclic nucleotide populations show considerable promise in the treatment of vasculopathies associated with luminal narrowing and PDE inhibition currently represents one of the most selective methods of clinically modifying levels of these second messengers. Many cardiovascular diseases are associated with a change in vascular smooth muscle cell (VSMC) phenotype, resulting in a hyperproliferative cell devoid of contractile properties. This cell has been defined as “synthetic/activated” and differs from the normal “contractile/quiescent” VSMC in several aspects. Previous investigations have established that phosphodiesterase 1C (PDE1C), a PDE not produced in contractile/quiescent VSMCs is upregulated, and the functionally dominant PDE in the presence of calcium in these cells. This study looked to establish a role for PDE1C in synthetic/activated VSMCs as it relates to the management of VSMC phenotype. Herein, we show that RNAi mediated knockdown of PDE1C decreased expression of phenotype-dependent markers in HASMCs including PDGF-alpha receptor, l-caldesmon, and TRPC1, while the expression of other markers, including PKG, vinculin, and beta-1 integrin were unaffected. Treatment with PDE1C siRNA also reduced cell migration, proliferation, and the ability of HASMCs to bind extracellular matrix proteins. These effects were mediated without any major changes in global cAMP levels. Furthermore, a novel interaction between PDE1C and the TRPC cation channel was identified that may establish a role for PDE1C in calcium-cAMP mediation. These findings establish an important role for PDE1C in the synthetic/activated HASMC, both phenotypically, and at the sub-cellular level. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2009-07-02 19:02:52.281
|
2 |
Integration of cAMP and Ca2+ signaling pathways: Formation of a PDE1C and TrpC1 containing complex.Xiao, Hao 26 March 2012 (has links)
The phenotypic modulation of vascular smooth muscle cells (VSMCs) from a “contractile/quiescent” to an “activated/synthetic” phenotype, with increased proliferative and migratory potential, is critical for the formation of advanced atherosclerotic lesions. Agents that regulate intracellular levels of the cyclic AMP (cAMP) and cyclic GMP (cGMP) have been shown to reduce VSMC migration and proliferation, and to reduce intimal thickening in response to vascular damage. Interestingly, expression of a specific cyclic nucleotide phosphodiesterase, namely PDE1C that is not expressed in contractile VSMCs is induced in activated human VSMCs and this directly impacts human VSMC phenotypic modulation. This study was undertaken to identify potential mechanism(s) by which PDE1C could impact VSMC phenotypic modulation and associated cellular functions. Overall, my data indicate that PDE1C controls store operated calcium (Ca2+) channel (SOCC) activity in activated human VSMCs. Indeed, expression of PDE1C increases store operated Ca2+ entry (SOCE), which in turn activates PDE1C. This linkage between PDE1C and the SOCC complex increases cytosolic [Ca2+] and activates cell proliferation. A potential human VSMC SOCC, the Transient receptor potential channel 1 (TrpC1), was shown to physically associate with PDE1C in HEK293T cells expressing these proteins heterologously, as well as in human aortic Smooth Muscle Cells (HASMCs), which natively express these proteins. In HEK293T cells, I also identified association of adenylyl cyclase 6 (AC6) and of the inositol-trisphosphate receptor (IP3R)
iii
with TrpC1. Interaction between TrpC1 and PDE1C in HASMCs is decreased upon activation of SOCE, suggesting PDE1C is activated after release from TrpC1-PDE1C complex. From these studies I have established a potential mechanism by which PDE1C signaling impacts SOCE and shown that a TrpC1-PDE1C complex may be important. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2012-03-22 14:34:38.647
|
Page generated in 0.0314 seconds