• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reactive Extrusion of Phosphate Cross-linked Resistant Pea Starches

Huo, Gang 27 April 2016 (has links)
The primary objectives of this study were to develop an effective reactive extrusion process to produce granular phosphorylated pea starches with enhanced enzyme resistance, and examine the effects of bulk phosphorylation conditions on the morphology, physicochemical and functional properties of extruded pea starch phosphates. Two types of commercially available pea starches (NutriPea and Meelunie) were chosen as the research subjects in this study with differing native resistance. A number of methods including optical microscopy, SEM, ICP-OES, Englyst method, DSC and rapid visco analysis (RVA) were used to characterize the morphology and properties of extruded pea starches. The effects of feed formulations and extrusion conditions on phosphorus incorporation and Englyst digestion profiles were examined systemically. The results showed that phosphorus content and digestion profiles were highly dependent on the feed moisture. Enzyme resistance did not positively correlate with phosphorus content for extruded pea starch phosphates in contrast to their counterparts prepared by conventional aqueous slurry. This was because extrusion processing can markedly increase the susceptibility of pea starch granules to enzymatic digestion. Lower feed moisture content (40%) gave lower phosphorus content, significantly lower RDS content, and higher SDS and/or RS content. Bulk phosphorylation in the extruder resulted in decreased RS2 content but increased RS4 content. Screw geometry with excessive mixing index was not desirable in terms of producing resistant starch. High screw speeds (150rpm and 200rpm) and low feed rate (1.02kg/h) brought about higher yields of SDS and RS in spite of lower phosphorus incorporation. Reactive extrusion of pea starches under optimized conditions achieved a significant but moderate increase either in RS content (from 18.67% to 22.57% for NutriPea) or in SDS content (from 37.18% to 42.23% for Meelunie) compared to their native counterparts. However, RS and SDS content could not be improved simultaneously at least based on these pea starches and the reactive extrusion processes in this study. The optical and SEM micrographs confirmed that the granule integrity was largely retained after optimized reactive extrusion process. DSC thermograms found no significant correlation between gelatinization characteristics and Englyst digestion profiles. Evidenced by RVA pasting profiles, NutriPea pea starch phosphates exhibited enhanced thermal and shear stability in comparison to their native counterpart. A novel foaming injection technology of cross-linking reagents solution was pioneeringly introduced to uniformly coat all starch particles at the lowest moisture level possible during the continuous production of granular NutriPea pea starch phosphates. Yet, the resulting phosphorus incorporation was much lower than expected and would require further studies. / Thesis / Master of Applied Science (MASc) / The Canadian food industry is increasingly interested in the potential to probe new avenues to produce enzyme-resistant food starches from pulses starches. Although extrusion cooking is commonly used for manufacturing cereals, snacks and other food products, no research has been reported on using an extruder to rapidly produce resistant pulse starches for functional food ingredients. This study aimed to develop an effective reactive extrusion process to produce phosphate cross-linked pea starches with enhanced enzyme resistance (i.e., increased slowly digestible starch (SDS) and resistant starch (RS) content ) based on an examination of the effects of reaction conditions on the properties of extrusion products. Two types of commercially available pea starches, NutriPea and Meelunie, were chosen as subjects of the research. The cross-linked pea starches under optimized conditions achieved a significant but moderate increase either in RS content (for NutriPea) or in SDS content (for Meelunie) compared to their native counterparts. However, RS and SDS content could not be improved simultaneously at least based on these pea starches and the reactive extrusion processes in this study.
2

Twin-Screw Extrusion for the Production of Lipid Complexed Pea Starch as a Functional Food Ingredient / Twin-Screw Extrusion for a Functional Food Ingredient

Ciardullo, Sarah Kristi January 2018 (has links)
Canada is a major global producer of pulse products including pulse starch, which notably contributes to a healthy diet. Strategically, Canada is taking steps to research methods of adding greater value to these crop products, and functional foods like resistant starch are particularly interesting. The primary objectives of this study were to develop an effective reactive extrusion process to produce gelatinized lipid complexed pea starches with enhanced enzyme resistance and examine the effects of bulk lipid complexing conditions on physicochemical and functional properties of extruded pea starches. One type of commercially available pea starch, Nutri-Pea, was chosen as the research subject in this study. A number of methods including; Englyst digestion method, differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), contact angle, titrations, residence time distribution (RTD) and rapid visco analysis (RVA) were used to characterize the properties of extruded pea starches. The effects of feed formulation and extrusion conditions on lipid complexing and Englyst digestion profiles were systematically examined on two mixing devices. An extensive kinetics study was conducted on a lab scale twin-screw compounder, DSM-Xplore. The process was then scaled up to produce bulk lipid complexed pea starch on a Leistritz twin-screw extruder. The results showed that lipid complexing and digestion profiles were highly dependent on feed moisture and induced screw shear. Reactive extrusion of pea starches under optimized conditions achieved a significant but moderate increase in either resistant starch (RS) content (from 13.3% to 20.2%) or slowly digestible starch (SDS) content (from 7.85% to 23.3%) compared to their native counterparts. However, RS and SDS content could not be improved simultaneously based on the pea starch and extrusion process in this study. Increased degree of substitution (DS) was found for myristic acid complexed pea starches (nominal DS= ~0.8) when compared to palmitic acid complexed pea starch (nominal DS= ~0.5). Contact angle measurements, FTIR and DSC thermograms confirmed the presence of lipids. Lipid complexed starch films showed increasing hydrophobicity with increasing lipid content. As an alternative product compared to functional foods, the modified starch was considered as a biodegradable film for industrial applications. The material was produced at the highest moisture content for extruded native starch and two concentrations of lipid complexed starch using an intensive screw design. Preliminary results show that increasing lipid content and adding 1% glycerol to samples decreases the force per film thickness required to puncture films. However further investigation is required to determine effect of heat and moisture deformation. / Thesis / Master of Applied Science (MASc) / Incorporation of pulses into food products has been a major area of Canadian research for its potential to create new avenues of enzyme resistant food starches. Extrusion cooking is commonly used in industry for producing various food products such as snacks and cereals but little research has been reported on using an extruder to rapidly produce resistant pulse starches as a functional ingredient on a large scale; resistant starch is a functional food beneficial to humans in the same manner as insoluble fiber but exhibits improved textural properties. This study aimed to develop an effective reactive extrusion process to produce lipid complexed pea starches with enhanced enzyme resistance (i.e. increased slowly digestible starch (SDS) and resistant starch (RS) content) by an examination of the effects of reaction conditions on the properties of extrusion products. The lipid complexed pea starches under optimized conditions achieved a significant but moderate increase in either RS content or SDS content depending on the sample formulation compared to their native counterparts. However, RS and SDS content could not simultaneously be improved in this study.
3

Preparation of resistant starch with heat moisture treatment, acid modification, enzymatic modification, and epoxidation methods

You, Sangwon January 2018 (has links)
The main objectives of this study were to develop an effective process to produce modified pea starch with enhanced enzyme resistance property (RS) for food applications. The work compares a non-chemical method (heat moisture treatment) versus a chemical method (crosslinking). One type of commercial pea starch (Nutri-Pea) was used exclusively as the raw material in this study. A number of methods were used to characterize the properties of the modified pea starches: water solubility index (WSI), titration (conversion, iodine value), intrinsic viscosity, infrared spectroscopy (FT-IR), Englyst digestion method, total starch content, and rapid visco analysis (RVA). The effects of heat-moisture treatment on native pea starch and enzyme treated pea starch were examined. The results showed that the produced samples with both native starch and enzyme treated starch exhibited a sharp increase in intrinsic viscosity. Overall, this method was deemed undesirable and not extensively examined past preliminary evaluations. The main focus of the study was on a citric acid crosslinking reaction, chosen for its food compliancy. A temperature of 120 oC was considered ideal for the reaction. FT-IR confirmed the presence of the citric acid incorporation in the starch samples. To improve the extent of reaction, Butanetetracarboxylic acid (BTCA) was considered as a replacement for citric acid and its treated samples showed higher conversion and lower water solubility index than that of the citric acid treated samples. Sodium propionate (NaP) was also considered in the reaction, this time as a food-grade catalyst and found to have minor benefit in cross-linking. BTCA/NaP treated sample reached the highest conversion of the study (96.8±2.3 %) and the lowest WSI (13.1±2.0 %), which increased the RS fraction of the starch from 18% to 32%. The RVA pasting profiles examined were too low to compare due to the high degree of cross-linking. Further improvements to RS were sought by debranching the starch before acid crosslinking. A BTCA/NaP treated sample with enzyme treatment showed a low WSI (31.7±2.3 %) yet substantially higher RS fraction (80.81±0.18 %). Similar to the non-debranched acid modified samples, there were no significant RVA pasting results because of the high cross-linking. Finally, crosslinking with an epoxidized oil was tested to continue looking at food-grade solution yet possible increase the rate of the crosslinking reaction. The results of WSI indicated that this method had little influence on cross-linking, possibly due to the low epoxidation efficiency of vegetable oils, as determined by iodine value. / Thesis / Master of Applied Science (MASc)
4

Podnikatelský plán Lyckeby Amylex, a.s. / Business plan of Lyckeby Amylex

Hůlová, Marie January 2007 (has links)
The biggest producer of potato starch in Czech republic is thinking about using the factory for producing pea starch. There are two reasons, at first quotas for producing potato starch, European Union determines these quotas. Secondly, it's very difficult (financially as well as agronomically) to plant potatoes. The capacity of the factory will be fulfilled and the dependence on one raw material will be reduced, these are the advantages of producing new kind of starch. The aim of this thesis, it's to make the business plan and to consider the reality of this plan.

Page generated in 0.0422 seconds