• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Method for Treating Wells in Reservoir Simulation

Gessel, Gregory M. 27 June 2007 (has links) (PDF)
A new method for formulating finite difference equations for reservoir simulation has been developed. It can be applied throughout the entire simulated reservoir or to local segments. When applied to cells containing vertical, fully penetrating, straight-line wells in a homogeneous reservoir, the resulting equations are equivalent to Peaceman's classical well equations used in most reservoir simulators today. However, when the new finite difference equations are applied to both the well-containing cells, and their neighbors, the accuracy of the simulation improves substantially. The method produces still better accuracy results when applied throughout the reservoir. Unlike the Peaceman correction, the new method also applies to reservoirs containing wells of complex geometry. This includes wells that are closely spaced and wells near reservoir faults and external boundaries. The method results from the incorporation of approximate analytical expressions for the pressure into the reservoir simulator's finite difference equations. By incorporating the “physics” of the flow into the solution, rather than relying on polynomial-based finite difference equations based on Taylor's series, as is usually done, solution accuracy improves. Accuracy is particularly improved around the wells where near-singularities in the pressure occur. Polynomials are incapable of accurately representing singularities.
2

STUDIES ON ALTERNATING DIRECTION METHOD OF MULTIPLIERS WITH ADAPTIVE PROXIMAL TERMS FOR CONVEX OPTIMIZATION PROBLEMS / 凸最適化問題に対する適応的な近接項付き交互方向乗数法に関する研究

Gu, Yan 24 November 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22862号 / 情博第741号 / 新制||情||127(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 山下 信雄, 教授 太田 快人, 教授 鹿島 久嗣 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM

Page generated in 0.0375 seconds