1 |
Identification of Phenolic Compounds from Peanut Skin using HPLC-MSnReed, Kyle Andrew 07 January 2010 (has links)
Consumers view natural antioxidants as a safe means to reduce spoilage in foods. In addition, these compounds have been reported to be responsible for human health benefits. Identification of these compounds in peanut skins may enhance consumer interest, improve sales, and increase the value of peanuts. This study evaluated analytical methods which have not been previously incorporated for the analysis of peanut skins. Toyopearl size-exclusion chromatography (SEC) was used for separating phenolic size-classes in raw methanolic extract from skins of Gregory peanuts. This allowed for an enhanced analysis of phenolic content and antioxidant activity based on compound classes, and provided a viable preparatory separation technique for further identification. Toyopearl SEC of raw methanolic peanut skin extract produced nine fractions based on molecular size. Analysis of total phenolics in these fractions indicated Gregory peanut skins contain high concentrations of phenolic compounds. Further studies revealed the fractions contained compounds which exhibited antioxidant activities that were significantly higher than that of butylated hydroxyanisole (BHA), a common synthetic antioxidant used in the food industry. This indicates peanut skin extracts are a viable antioxidant source, and that synthetic antioxidants can be replaced with those naturally-derived from peanut by-products. Structures contained in each fraction were identified using high performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) ion trap mass spectrometry (MSn). Prior to this study, approximately 20 compounds have been identified in peanut skins. The combination of Toyopearl SEC with ESI-HPLC-MSn allowed for the identification of 314 phenolic-based compounds, most of which are newly discovered compounds in peanut skins. Many compounds identified are known to have powerful antioxidant effects, and also have been reported to exhibit numerous beneficial chemical and biological activities, including the treatment of various human health-related conditions. It is evident that peanut skins may be a potential untapped source for the extraction of natural food antioxidants, nutracueticals, and even pharmaceuticals. Because peanut skins are largely a wasted resource to peanut processors, the novel polyphenols identified in this research could have a significant financial impact on the peanut industry. / Ph. D.
|
2 |
Evaluation of Peanut Skin Extract, Grape Seed Extract, and Grape Seed Extract Fractions to Reduce Populations of Select Foodborne PathogensLevy, Jason M. 10 June 2014 (has links)
Grape seed extract (GSE) and peanut skin extract (PSE) are waste products in the wine and peanut industries. Both extracts have high concentrations of polyphenols, known to possess antioxidant and antimicrobial properties. A subcategory of polyphenol is procyanidin, which can be divided into two types, type A and type B. Type A (PSE), contains two single bonds connecting the phenolic groups while type B (GSE), contains one single bond connecting the phenolic groups. The minimum inhibitory concentration (MIC) of the two extracts was evaluated for their antimicrobial effect on Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella Typhimurium using the pour plate method. GSE was found to have a significantly lower MIC (p ≤ 0.05) than PSE for L. monocytogenes (GSE=60.60ppm, PSE=not found), S. aureus (GSE=38.63ppm, PSE=51.36ppm), and S. Typhimurium (GSE=45.73ppm, PSE=60.60ppm). There was no significant difference in inhibition of E. coli O157:H7 (GSE=47.44ppm, PSE=51.13ppm). Since GSE, contributed to greater pathogen inhibition, its extract was fractionated into monomer and oligomers components. Growth curves of all four pathogens inoculated in the monomer and oligomer fractions were compared using the BioScreen method. Oligomers inhibited growth of L. monocytogenes, S. aureus, and E. coli O157:H7 while monomers inhibited growth of S. Typhimurium. These results indicate that an extract with type B procyanidins that are high in oligomers may be more effective as antimicrobials. Type B procyanidins have also been shown to prevent bacterial adhesion, as is the case with urinary tract infections, and may aid in the prevention of biofilms. / Master of Science in Life Sciences
|
Page generated in 0.066 seconds