Spelling suggestions: "subject:"bubble likes""
1 |
The Nature and Origin of Pebble Dikes and Associated Alteration: Tintic Mining District (Ag-Pb-Zn), UtahJohnson, Douglas M 01 November 2014 (has links) (PDF)
In many ore deposits throughout the world, brecciation often accompanies or occurs in association with mineralization (Sillitoe, 1985). Such is the case in the Tintic Mining District (Ag-Pb-Zn) of north-central Utah, where unique breccia features called pebble dikes occur alongside significant mineralization. Pebble dikes are tabular bodies of breccia, which consist of angular to rounded clasts of quartzite, shale, carbonate, and minor igneous rock cemented in a fine-grained clastic matrix. All clasts now lie above or adjacent to corresponding source rocks. Dikes are thin, typically less than 0.3 m wide to as much as 1 m, and can exceed 100 m in length. The average of the largest clast sizes is less than 3 cm but correlates positively with pebble dike width. Contacts are sharp and an envelope of fine breccia surrounds roughly half of the dikes. Pebble dikes are mostly hosted in an Eocene rhyolite lava flow, which displays argillic to silicic alteration when in contact with a pebble dike, but are also hosted in an assortment of folded Paleozoic sedimentary rocks. The dikes show a strong northeast trend in orientation, following a regional fabric of northeast-trending strike-slip and oblique-slip faults.The formation of pebble dikes has been historically attributed to the intrusion of the Silver City Stock, the Tintic District's main productive intrusion (Morris and Lovering, 1979; Hildreth and Hannah, 1996; Kim, 1997; Krahulec and Briggs, 2006). However, pebble dikes are spatially associated with a previously unrecognized porphyritic unit, informally named the porphyry of North Lily, which is texturally, mineralogically, and chemically distinct from the Silver City Stock, and like pebble dikes, is emplaced in northeast-trending plugs and dikes. Pebble dikes show a strong spatial correlation to outcrops of the porphyry of North Lily. Additionally, clasts of the porphyry of North Lily have been found in pebble dikes, while pebble dike quartzite clasts have been found as xenoliths in the porphyry of North Lily. These similarities and interactions suggest simultaneous formation. Low-grade alteration associated with pebble dikes indicates that they formed at elevated temperatures (<150°C). Stable isotope characteristics of rhyolite altered during the emplacement of pebble dikes suggests that the dikes formed in the presence of heated groundwater, with little to no magmatic water association. The overall physical, spatial, and chemical characteristics of pebble dikes of the Tintic Mining District suggest that they formed by the mobilization of breccia in the explosive escape of groundwater that had been heated by the porphyry of North Lily. This escape occurred along pre-existing northeast-trending faults and fractures. Pebble dikes then became pathways for later ore fluids, easing the creation of the district's abundant mineral resources.
|
2 |
Multi-Stage Construction of the Little Cottonwood Stock, Utah: Origin, Intrusion, Venting,Mineralization, and Mass MovementJensen, Collin G 01 July 2019 (has links)
The Little Cottonwood stock in central Utah, USA, is a composite granitic pluton that hosts the White Pine porphyry Mo-W deposit towards its northeast margin. The deposit is centered on the smaller White Pine intrusion, and associated igneous units include the Red Pine porphyry, phreatomagmatic pebble dikes, and rhyolite dikes. Twelve new U-Pb zircon LA-ICP-MS ages, for samples from this deposit and in pebble dikes from the nearby East Traverse Mountains, give peak ages of about 30 Ma and 27 Ma for the Little Cottonwood stock and White Pine intrusion, respectively, which correlate well with ages from previous studies. Ages of about 26 Ma were obtained for the previously undated Red Pine porphyry.The ages of the Little Cottonwood stock, White Pine intrusion, and Red Pine porphyry, as well as disparities in whole rock elemental differentiation trends, suggest that these units are magmatically distinct, and are not simply derivatives of one another with varying degrees of differentiation. Quench textures and resorbed quartz in the Red Pine porphyry are evidence that the magma system vented, which probably produced volcanic eruptions and emplacement of pebble dikes nearly synchronously with quartz-sericite-pyrite alteration and Mo-W mineralization. The mineralogy and geochemistry of these units imply that the magmas formed in a subduction-related magmatic arc setting rather than in an extensional basin related to orogenic collapse.Pebble dikes in the East Traverse Mountains 17 km away contain igneous clasts that resemble the units in the White Pine deposit in texture, mineralogy, and in U-Pb zircon ages. This supports other recent studies that suggest that the East Traverse Mountains rested atop the White Pine deposit prior to being displaced in a mega-landslide, and the pebble dikes in both locations are the top and bottom of the same mineralized phreatomagmatic system.The construction of the pluton began with intrusion of the Little Cottonwood stock, then the White Pine and Red Pine magmas. Fluid exsolution from the Red Pine magma accompanied venting, inception of the mineralizing hydrothermal system, and quenching to a porphyritic stock. Pebble dikes intruded into the overlying East Traverse Mountain block, which catastrophically failed millions of years later and was emplaced in its current location.
|
3 |
Nature and Origin of the East Traverse Mountains Mega-Landslide, Northern Utah (USA)Chadburn, Rodney Ryan 11 December 2020 (has links)
The East Traverse Mountains are an E-W trending mountain range dividing Utah and Salt Lake valleys in northern Utah. Geologically perplexing, the nature of the East Traverse Mountains has been under investigation for 140 years. Previously, the mountain range was proposed to be a dismembered but still coherent down-faulted block that experienced 4 km of post-thrusting extension within the Charleston-Nebo thrust sheet. However, new insight on the origin of the East Traverse Mountains indicate that it is a mega landslide, roughly ~100 km3 in size, which catastrophically slid from the upper reaches of the Little-Cottonwood stock to its present-day location. The primary evidence for this landslide includes two unusual dike swarms whose roots are in the Wasatch Range and whose upper reaches are now in the East Traverse Mountains, 16 km to the SW. A swarm of pebble dikes, indicative of porphyry mineralization is found at the center of the East Traverse Mountains and contain pebbles of Little-Cottonwood stock as well as two other intrusions found at the center of a mineralized zone. These granitic clasts have phyllic alteration, contain molybdenite grains and are sourced from a subeconomic molybdenum-copper porphyry deposit located 16 km to the NE. The other dike swarm occurs on the SE corner of the range near Alpine, Utah, which contains various andesitic and phaneritic dikes of intermediate-felsic compositions (56-69 wt.% SiO2) with localized marble on their southern margin. These dikes range in U-Pb ages from 36-29 Ma. Moreover, other evidence includes brecciation of the entire mountain range as well as along the slide path of this landslide. Breccia, as well as pseudotachylyte and cataclasite have been discovered that formed in the rapid transportation of the 1-2 km thick detached block. Devitrified pseudotachylyte veins range in thickness from 1 cm to 1 m and are present in the roof zone of the pluton. Sixteen kilometers of sliding caused 70-80% of the Oquirrh Group rocks of the East Traverse Mountains to be fractured to less than 1-inch diameter clasts in breccias and broken formations, as documented by 16 years of mining. U-bearing opal replaced significant areas of brecciated volcanic rocks when hot water seeped into highly-fractured, argillically altered rock. U-Pb ages of 6.1 ± 0.9 Ma from these opalite areas could provide a minimum age for the emplacement of the mountain block. Underlying the East Traverse Mountains slide block is a layer of fallout tuff deposited in the Jordan River Narrows member with 40Ar/39Ar ages of 6.62 ± 0.07 Ma which provides a maximum age of emplacement. Therefore, we propose that the East Traverse Mountains mega-landslide occurred between 6.1 ± 0.9 Ma and 6.62 ± 0.07 Ma. Our interpretation for the East Traverse Mountains mega-landslide model builds upon previous research and data, with the addition of these recent findings. This new interpretation is crucial for understanding the potential for large normal fault systems to create significant landslide hazards.
|
4 |
Nature and Origin of the East Traverse Mountains Mega-Landslide, Northern Utah (USA)Chadburn, Rodney Ryan 11 December 2020 (has links)
The East Traverse Mountains are an E-W trending mountain range dividing Utah and Salt Lake valleys in northern Utah. Geologically perplexing, the nature of the East Traverse Mountains has been under investigation for 140 years. Previously, the mountain range was proposed to be a dismembered but still coherent down-faulted block that experienced 4 km of post-thrusting extension within the Charleston-Nebo thrust sheet. However, new insight on the origin of the East Traverse Mountains indicate that it is a mega landslide, roughly ~100 km3 in size, which catastrophically slid from the upper reaches of the Little-Cottonwood stock to its present-day location. The primary evidence for this landslide includes two unusual dike swarms whose roots are in the Wasatch Range and whose upper reaches are now in the East Traverse Mountains, 16 km to the SW. A swarm of pebble dikes, indicative of porphyry mineralization is found at the center of the East Traverse Mountains and contain pebbles of Little-Cottonwood stock as well as two other intrusions found at the center of a mineralized zone. These granitic clasts have phyllic alteration, contain molybdenite grains and are sourced from a subeconomic molybdenum-copper porphyry deposit located 16 km to the NE. The other dike swarm occurs on the SE corner of the range near Alpine, Utah, which contains various andesitic and phaneritic dikes of intermediate-felsic compositions (56-69 wt.% SiO2) with localized marble on their southern margin. These dikes range in U-Pb ages from 36-29 Ma. Moreover, other evidence includes brecciation of the entire mountain range as well as along the slide path of this landslide. Breccia, as well as pseudotachylyte and cataclasite have been discovered that formed in the rapid transportation of the 1-2 km thick detached block. Devitrified pseudotachylyte veins range in thickness from 1 cm to 1 m and are present in the roof zone of the pluton. Sixteen kilometers of sliding caused 70-80% of the Oquirrh Group rocks of the East Traverse Mountains to be fractured to less than 1-inch diameter clasts in breccias and broken formations, as documented by 16 years of mining. U-bearing opal replaced significant areas of brecciated volcanic rocks when hot water seeped into highly-fractured, argillically altered rock. U-Pb ages of 6.1 ± 0.9 Ma from these opalite areas could provide a minimum age for the emplacement of the mountain block. Underlying the East Traverse Mountains slide block is a layer of fallout tuff deposited in the Jordan River Narrows member with 40Ar/39Ar ages of 6.62 ± 0.07 Ma which provides a maximum age of emplacement. Therefore, we propose that the East Traverse Mountains mega-landslide occurred between 6.1 ± 0.9 Ma and 6.62 ± 0.07 Ma. Our interpretation for the East Traverse Mountains mega-landslide model builds upon previous research and data, with the addition of these recent findings. This new interpretation is crucial for understanding the potential for large normal fault systems to create significant landslide hazards.
|
Page generated in 0.0482 seconds