• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Restricted Optimal Pebbling and Domination in Graphs

Chellali, Mustapha, Haynes, Teresa W., Hedetniemi, Stephen T., Lewis, Thomas M. 20 April 2017 (has links)
For a graph G=(V,E), we consider placing a variable number of pebbles on the vertices of V. A pebbling move consists of deleting two pebbles from a vertex u∈V and placing one pebble on a vertex v adjacent to u. We seek an initial placement of a minimum total number of pebbles on the vertices in V, so that no vertex receives more than some positive integer t pebbles and for any given vertex v∈V, it is possible, by a sequence of pebbling moves, to move at least one pebble to v. We relate this minimum number of pebbles to several other well-studied parameters of a graph G, including the domination number, the optimal pebbling number, and the Roman domination number of G.
2

An Improved Upper Bound for the Pebbling Threshold of the n-path

Wierman, Adam, Salzman, Julia, Jablonski, Michael, Godbole, Anant P. 28 January 2004 (has links)
Given a configuration of t indistinguishable pebbles on the n vertices of a graph G, we say that a vertex v can be reached if a pebble can be placed on it in a finite number of "moves". G is said to be pebbleable if all its vertices can be thus reached. Now given the n-path Pn how large (resp. small) must t be so as to be able to pebble the path almost surely (resp. almost never)? It was known that the threshold th(Pn) for pebbling the path satisfies n2clgn≤th(Pn)≤n22lgn, where lg=log2 and c<1/2 is arbitrary. We improve the upper bound for the threshold function to th(Pn)≤n2dlgn, where d>1 is arbitrary.
3

Improved Pebbling Bounds

Chan, Melody, Godbole, Anant P. 06 June 2008 (has links)
Consider a configuration of pebbles distributed on the vertices of a connected graph of order n. A pebbling step consists of removing two pebbles from a given vertex and placing one pebble on an adjacent vertex. A distribution of pebbles on a graph is called solvable if it is possible to place a pebble on any given vertex using a sequence of pebbling steps. The pebbling number of a graph, denoted f (G), is the minimal number of pebbles such that every configuration of f (G) pebbles on G is solvable. We derive several general upper bounds on the pebbling number, improving previous results.

Page generated in 0.0847 seconds