• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the Treatment Efficiency of Advanced Purification Processes and the Feasibility of Wastewater Recycling in Three Drinking Water Treatment Plants

Lin, Yung-chang 07 August 2007 (has links)
The purposes of this study are¡G(1) comparing the treatment efficiency with advanced and traditional drinking water treatment plants in southern Taiwan¡F(2) assessing the treatment efficiency and formation of disinfection by-products in advanced water treatment processes¡F(3) assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units¡F(4) evaluating corrosion of drinking water transportation pipelines and reproducing of chlorination by-products. This study found that the removal efficiency of turbidity, iron, manganese, coliform group and total bacterial count were approximately 99% by advanced and traditional purification processes. The concentrations of ammonia-N (NH3-N), nitrite nitrogen and nitrate nitrogen were lower drinking water quality standard. Pellet softening process was designed following coagulation/sedimentation unit to increase 8~14% and 6~20% removal efficiency of alkalinity and total hardness (TH) concentrations. The removal efficiency of total dissolved solids (TDS) was approximately 3~15% by advanced water treatment processes better than traditional water treatment processes. In the formation of disinfection by-products (DBPs), the trihalomethanes (THMS) and haloacetic acid (HAA5) were efficiently decreased by advanced purification processes. Bromate concentrations which lower detection limit were treated by ozonation process during the study periods. Advanced treatment processes should control the dosage of ozone and post-chlorine to avoid production of DBPs. In wastewater reuse, the treatment efficiency of suspended solids (SS) was 48¡ã99%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH3-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH3-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible. The Chengcing Lake water treatment plant significantly reduced alkalinity, Ca2+ concentration and TH concentration via pellet softening treatment: however, reducing the Langelier saturation index (LSI) value of water could cause some adverse effects on distribution systems. Operational conditions by Pingding water treatment plant was added base to water can be tried to adjust pH to maintain a slightly positive LSI value, whereas for water with low hardness and alkalinity.

Page generated in 0.071 seconds