• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tree Peony Species as an Efficient Source for α-Linolenic Acid Production

Xie, Lihang H., Zhang, Qingyu, Kilaru, Aruna, Zhang, Yanlong 01 January 2020 (has links)
No description available.
2

Tree Peony Species Are a Novel Resource for Production of α-Linolenic Acid

Kilaru, Aruna, Xie, Lihang H., Zhang, Qingyu, Zhang, Yanlong 01 January 2019 (has links) (PDF)
Tree peony is known worldwide for its excellent ornamental and medical values, but recent reports that their seeds contain over 40% α-linolenic acid (ALA), an essential fatty acid for humans drew additional interest of biochemists. To understand the key factors that contribute to this rich accumulation of ALA, we carried out a comprehensive study of oil accumulation in developing seeds of nine wild tree peony species. The fatty acid content and composition was highly variable among the nine species; however, we selected a high- (P. rockii) and low-oil (P. lutea) accumulating species for a comparative transcriptome analysis. Similar to other oilseed transcriptomic studies, upregulation of select genes involved in plastidial fatty acid synthesis, and acyl editing, desaturation and triacylglycerol assembly in the endoplasmic reticulum was noted in seeds of P. rockii relative to P. lutea. Also, in association with the ALA content, transcript levels for fatty acid desaturases (SAD, FAD2 and FAD3), which encode for enzymes necessary for polyunsaturated fatty acid synthesis were higher in P. rockii compared to P. lutea. We further showed that the overexpression of PrFAD2 and PrFAD3 in Arabidopsis increased linoleic and α-linolenic acid content, respectively and modulated their final ratio in the seed oil. In conclusion, we identified the key steps that contribute to efficient ALA synthesis and validated the necessary desaturases in P. rockii that are responsible for not only increasing oil content but also modulating 18:2/18:3 ratio in seeds. Together, these results will aid to improve essential fatty acid content in seeds of tree peonies and other crops of agronomic interest.
3

Tree Peony Species as an Efficient Source for α-Linolenic Acid Production

Xie, Lihang H., Zhang, Qingyu, Kilaru, Aruna, Zhang, Yanlong 21 July 2019 (has links) (PDF)
The increasing need for healthy edible oil has driven us to identify α-linolenic acid (ALA)-rich species and identify key biochemical steps in ALA synthesis. Seeds of tree peony species are rich in unsaturated fatty acid content with > 40% ALA in the total fatty acid. However, fatty acid content and composition is variable among the tree peony germplasm. To this extent, a comparative study was carried out to identify the key genes responsible for differential oil accumulation among nine wild tree peony species. Subsequent to analyzing fatty acid content and composition of the seeds from nine tree peony species, a high- (P. rockii) and low-oil (P. lutea) accumulating species were selected for transcriptome analysis. Gene expression analysis revealed upregulation of select genes involved in plastidial fatty acid synthesis, and acyl editing, desaturation and triacylglycerol assembly in the endoplasmic reticulum in seeds of P. rockii relative to P. lutea. Also, in association with ALA content in seeds, transcript levels for fatty acid desaturases (SAD, FAD2 and FAD3), which encode for enzymes necessary for polyunsaturated fatty acid synthesis were higher in P. rockii compared to P. lutea. Additionally, we showed that the overexpression of PrFAD2 and PrFAD3 in Arabidopsis increased linoleic and α-linolenic acid content, respectively and modulated their final ratio in the seed oil. In conclusion, we identified the key steps that contribute to efficient ALA synthesis and validated the necessary desaturases in P. rockii that are responsible for not only increasing oil content but also modulating 18:2/18:3 ratio in seeds. Together, these results will aid to improve essential fatty acid content in seeds of tree peonies and other crops of agronomic interest.
4

Fatty Acid and Associated Gene Expression Analyses of Three Tree Peony Species Reveal Key Genes for α-Linolenic Acid Synthesis in Seeds

Zhang, Qing-Yu, Yu, Rui, Xie, Li-Hang, Rahman, Mahbubur, Kilaru, Aruna, Niu, Li-Xin, Zhang, Yan-Long 05 February 2018 (has links)
The increasing demand for healthy edible oil has generated the need to identify promising oil crops. Tree peony (Paeonia section Moutan DC.) is a woody oil crop with α-linolenic acid contributing for 45% of the total fatty acid (FA) content in seeds. Molecular and genetic differences that contribute to varied FA content and composition among the wild peony species are however, poorly understood. Analyses of FA content and composition during seed development in three tree peony species (P. rockii, P. potaninii, and P. lutea) showed varied FA content in the three species with highest in P. rockii, followed by P. potaninii, and P. lutea. Total FA content increased with seed development and reached its maximum in its final stage. Seed FA composition analysis of the three species also revealed that α-linolenic acid (C18:3) was the most abundant, followed by oleic (C18:1) and linoleic (C18:2) acids. Additionally, quantitative real-time RT-PCR analyses of 10 key seed oil synthesis genes in the three tree peony species revealed that FAD3, FAD2, β-PDHC, LPAAT and Oleosin gene expression levels positively correlate with total FA content and rate of accumulation. Specifically, the abundance of FAD3 transcripts in P. rockii compared with P. potaninii, and P. lutea suggests that FAD3 might play in an important role in synthesis of α-linolenic acid via phosphatidylcholine-derived pathway. Overall, comparative analyses of FA content and composition in three different peony species revealed correlation between efficient lipid accumulation and lipid gene expression during seed development. Further characterization and manipulation of these key genes from peonies will allow for subsequent improvement of tree peony oil quality and production.

Page generated in 0.0446 seconds